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Preface 

Vertical transmitting antennas have been used since the beginning of radio.  
With well over 100 years of experience, literally thousands of articles and 
hundreds of books you would think there would be very little left to 
discover.  However, when I began researching the literature I found 
continuous repetition of the same basic information but not so much on fine 
details, especially over the last 40 years or so.  Useful information current 
at earlier times has often been dropped or forgotten.  In a few cases I felt 
some of the accepted "common knowledge", much of it derived from 
broadcast applications, was not correct or at least not appropriate for 
amateur applications.  In particular HF ground system design and the 
significant differences between HF and LF-MF soil electrical characteristics 
has not been adequately aired.  I admit to a passion for fine details 
bordering on obsession but in the case of vertical antennas at least some 
details can be of practical help.   

Sixty plus years ago Tom Erdmann, W7DND (SK),  gave me some advice 
on priorities for my first station:  if I had a $100 I should spend $90 on the 
antenna, $9 on the receiver and $1 for the transmitter.  Prices have gone 
up a bit in the past 65 years but I still keep Tom's priorities firmly in mind.  
I've always invested far more time, money and effort in my antennas than 
the rest of the station.  Antennas are a lot fun and in retirement LF, MF and 
HF verticals have become an obsession.  For the past 25 years I've been 
particularly interested in 160m operation, building a number of vertical and 
sloper arrays.  For the last 10 years I've been part of the ARRL 600m 
experimental group (WD2XSH) transmitting at 465-510 kHz.  At the 2012 
WRC amateurs succeeded in obtaining worldwide allocations on 2200m 
and 630m and the FCC has now given U.S. amateurs access to these 
bands. 

For many years amateurs have had only one MF band, 1.80-2.0 MHz 
(160m) but now 135.7-137.8 kHz (2200m) and 472-479 kHz (630m) has 
been added.  Except for a few experimental licenses amateurs haven't 
been allowed on these frequencies for over 100 years.  This lack of 
experience means there is a need for practical information on many 
subjects related to LF/MF operation including antennas.  There are many 
"old" but potentially useful ideas which deserve renewed consideration. 

Because of the vast literature on vertical antennas I've made no attempt to 
make this book a compendium, it is just "some notes", nothing more.  I've 
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focused on subjects of interest to me and have direct experience with.  
Some of the material in this book is original but most is drawn from the 
work of others which I acknowledge whenever I can identify the source.  
The references have been placed at the end of each chapter.   

It's my personal philosophy that one needs both theory and experiment to 
understand a phenomenon.  In particular theory and experiment must give 
the same answer, if not then you don't understand what's going on and 
need to keep working to resolve the differences!  I have spent many hours 
wondering "what the h... is going on?" 

Because I'm speaking to a audience with a very wide range of experience, 
from the non-technical newcomer to the graduate engineer, the 
arrangement of this book has to be a little different.  I've divided the 
material into two levels.  The six chapters in the body of the book are 
limited to basic information which, combined with a little modeling or simple 
calculations, can be applied directly using graphs for special problems like 
inductor design.  The math has been minimized.  For those more 
mathematically proficient and wanting more detailed justification for the 
advice given in the main text, an extensive body of technical  information 
has been placed in a series of appendices which are available on-line (tbd).   

While this book is far from perfect or complete I hope it's useful.    

GL and 73, Rudy Severns N6LF, WD2XSH/20            April 2017 
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Chapter 1 

An Overview  
1.0 Introduction 

100 years ago amateurs were restricted to wavelengths below 200m (f >1.5 MHz).  
This has recently changed and we now have allocations at 2200m (135.7-137.8 
kHz, LF) and 630m (472-479 kHz, MF).  However, amateurs have very little 
experience at these frequencies and design and construction of antennas for the 
new bands is substantially different from HF.  The intent of these notes is to 
provide practical advice on LFMF transmitting antennas.  There is a perception 
that substantial acreage is required for the antennas on these bands.  That is not 
the case!  Those with small properties can be successful but we have to know how!   

There are differences between LFMF and HF which impact antenna design: 

1) Wavelengths are much longer so that any practical antenna will be electrically 
small. 

2) Soil electrical characteristics change substantially going from HF down to 
LFMF. 

3) Transmitting power limitations are in terms of power radiated from the antenna 
rather than maximum transmitter output power. 

1.1 Long wavelengths 

At 1.9 MHz the wavelength (λ) ≈518' so a λ/4 vertical will be ≈130' high.  If you 
divide 1.9 MHz by four you get 475 kHz, right in the middle of the new 630m band.  
A λ/4 on160m will be only ≈λ/16 at 475 kHz.  2200m is another factor of 3.5 lower 
in frequency so a λ/4 vertical on 160m is only ≈0.018λ on 137 kHz.  At 475 kHz 
λ≈2071' so a λ/4 vertical would be ≈500' high.  At 137 kHz λ/4 ≈1800'!  In any case, 
the FCC has limited the maximum height to 197' (60m), which is only 0.095λ at 
137 kHz. 
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The focus of this book is on antennas with heights (H) practical for amateurs, i.e. 
H=20'→100' (H≈0.01→0.05λ at 475 kHz and H≈0.003→0.015λ at 137 kHz).  In 
terms of electrical height these are certainly "short" antennas, with very low 
radiation resistance (Rr), narrow matched SWR bandwidth and low efficiency.  A 
major part of the design effort for LFMF antennas is directed towards obtaining 
adequate efficiency. 

1.2 Soil characteristics 

Because soil electrical characteristics have a profound affect on transmitting 
antenna performance, basic information on soil electrical characteristics is useful.     

σ = soil conductivity in Siemens/meter [S/m], Siemen=Mho 
εo = permittivity of a vacuum = 8.854 X 10-12 [Farads/m] 
εr = relative permittivity or relative dielectric constant 
ε=εoεr= effective permittivity or dielectric constant [Farads/m] 
μo = permeability of free space = 4π 10-7 H/m 
ω=2πf 

 

 

Figure 1.1 - Typical soil conductivity variation.   
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Figure 1.2 - Typical soil permittivity variation.   

Figures 1.1 and 1.2 illustrate how soil electrical characteristics vary with 
frequency at a typical QTH.  In this example at 100 kHz σ≈0.15 S/m and that value 
increases with frequency.  εr behaves just the opposite, decreasing with frequency.  

1.3 EIRP and radiated power 

On the new bands power limits are stated in terms of "effective isotropic radiated 
power" or "EIRP".  The "isotropic" in EIRP refers to an idealized antenna in free 
space which radiates power uniformly in all directions, i.e. if you measure the 
power density (S, in W/m2) on the surface of a virtual sphere surrounding an 
isotropic radiator you'll find the power density is the same everywhere. 

 

Figure 1.3 - Power density: isotropic radiator versus a short monopole.  
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Figure 1.3 compares the radiation patterns of an isotropic radiator in free space to 
a short vertical over ideal ground.  The directivity of the isotropic radiator is 1 (0 
dBi).  When a short monopole is placed over a perfect ground-plane, for the same 
total radiated power (Pr) the power density, at the same distance horizontally from 
the base, will be greater by a factor of 3 (+4.77 dB).  This increase comes from two 
sources, Pr is being radiated into a hemisphere rather than a sphere because of 
reflection from the ideal ground which doubles S and there is a further increase of 
1.5X (+1.77 dB) due to the directivity of a short monopole.  There is a direct 
relationship between the power density at a given distance and the magnitude of 
the electric field intensity (|E|) at that point: 

|𝐄𝐄| = √𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑    (1.2) 

Because of it's directivity we must reduce the Pr of the short monopole by a factor 
of three to maintain the same power density as an isotropic.  On 630m 5W EIRP is 
allowed and on 2200m the allowed EIRP is 1W, which means Pr is about 1.7W on 
630m and 0.33W on 2200m.  The key word is "radiated" power.   

At HF, antenna efficiencies are typically >90% and the focus is on gain.  On LFMF 
our goal is to achieve sufficient efficiency that we can radiated the allowed power 
with the available transmitter power.  This is a fundamentally different mindset!  
We have the choice of a large efficient antenna with small input power (Pi) or a 
small inefficient antenna with a large input power.  Most installations will be a 
balance between the two extremes.  Running very high power is an option in 
theory but, as shown in chapter 6, section 6.10 and chapter 2, section 2.10, very 
high power into a small antenna results in very high voltages (tens of kV!) and 
currents (kA).  The high power approach is self limiting!  A transmitter output 
power of 100W is generally pretty easy to obtain and 100W is frequently assumed 
in later chapters unless stated otherwise.  In addition to the EIRP power limit, the 
FCC has also limited the input power to the antenna to 500W pep on 630m and 1.5 
kW pep on 2200m, however, given limitations due to the high voltages associated 
with these power levels, from a practical point of view these limits are moot. 

How can we determine the radiated power (Pr) for a particular antenna?  The pros 
do it by measuring the electric field intensity at a given distance from which Pr can 
be calculated.  For most amateurs that's not very practical.  If the value for the 
antenna's radiation resistance (Rr) is known we can calculate Pr in a couple of 
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ways.  Given Rr and a measurement of Io, the current at the base of the antenna, 
then: 

𝐏𝐏𝐏𝐏 = 𝐈𝐈𝐈𝐈𝟐𝟐𝐑𝐑𝐏𝐏     (1.3) 

As an alternative we can measure the input power (Pi) and the resistive component 
of the feedpoint impedance (Ri) to give: 

𝐏𝐏𝐏𝐏 = 𝐏𝐏𝐏𝐏 �𝐑𝐑𝐏𝐏
𝐑𝐑𝐏𝐏
�     (1.4) 

Where do we get Rr from?  As will be shown in chapters 2 and 3, Rr can be found 
using either modeling or manual calculations.  Using the value for Rr from a model 
over perfect ground is in general not valid at HF where the dielectric properties of 
soil have a direct influence on Rr.  However, at frequencies below ≈1 MHz the soil 
electrical characteristics are dominated by conductivity and Rr can be 
approximated by the perfect ground value.   

1.4 Some fundamental advice 

A very succinct summary of LFMF antenna design was given by Woodrow Smith[2] 
75 years ago: 

"The main object in the design of low frequency transmitting 
antenna systems can be summarized briefly by saying that the 
general idea is to get as much wire as possible as high in the air as 
possible and to use excellent insulation and an extensive ground 
system.” 

This simple advice should be taken literally! 
This advice can be organized in order of priority: 

1) Make the vertical as tall as you can. 

2) Use as much capacitive top-loading as practical (chapter 3). 

3) Use carefully placed high Q loading coils (chapters 4 & 6). 
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4) Put substantial effort into the ground system, with the radial density high 
near the base of the vertical and under the top-loading hat (chapter 5). 

5) Minimize conductor losses by using multiple wires and/or large diameter 
conductors (chapter 3). 

6) Use high quality insulators, at the base and at wire ends. 

1.5 Modeling and calculations 

Antennas for these bands have to be customized for each installation to take 
advantage of available resources, space and supports.  There are several ways to 
approach the design: use a combination of algebraic approximations and graphs or 
use antenna modeling CAD software or some combination of the two. 

Much of the material in this book was derived using CAD modeling,  EZNEC Pro4 
v6[3] (with the NEC4.2 engine) and AutoEZ[4] an EXCEL spreadsheet which 
automates many modeling functions.  These are very good tools but except for 
buried ground systems most design questions can be adequately addressed with 
NEC2 based software like 4NEC2[5] which is an excellent free program.   

Computer modeling is not the only way.  One of the consequences of the small 
electrical size of LFMF antennas is that the currents on the conductors tend have 
only small phase differences and relatively linear amplitude variation.   As shown 
in chapters 2 and 3, it's possible to use simple algebraic expressions to estimate 
radiation resistance (Rr), effective capacitance of top-loading structures (Ct) and 
other quantities.   

1.6 Loading inductors   

A major part of the design effort for LFMF antennas is directed at obtaining 
adequate efficiency.  Given practical height limitations, most LFMF antennas will 
require loading inductors for resonance and matching.  In many cases the losses in 
this inductor may determine the efficiency of the antenna.  Much of the design 
effort is directed towards first minimizing the required inductance (L) with height 
and top-loading (chapter 3) and then maximizing inductor "Q" (QL) (chapter 6). 
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1.7 Examples of early LF/MF antennas 

Small antennas are not new.  At the beginning of radio very long wavelengths were 
used so all antennas were "small" even those hundreds of feet high.  A lot of effort 
was directed towards improving these antennas, work that continued into the 
1960's for VLF applications[6].  The low efficiency and narrow bandwidth associated 
with small antennas arises from fundamental physics [7,8].  Like the perpetual 
motion machine, 100% efficiency in small antenna is not in the cards but adequate 
efficiencies are not hopeless. Interestingly, short antennas are still a hot topic 
today among professionals where the interest is in very small antennas[9] for 
wireless mobile devices, RFID, etc.  Despite 120 years of work there's still a lot to 
learn!  A rich source of ideas for LFMF antennas are old radio books.  Often these 
books are seen at ham flea markets or used book stores for a few dollars.  The 
1920's and especially the 1930's were a time when most amateurs did not have a 
lot of money and improvisation was the order of the day.  Much of that work is still 
useful today.   

 

Figure 1.4 - EZNEC model of the 1BCG antenna. 
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Figure 1.4 is a sketch of the antenna used for the initial transatlantic tests by 
amateurs (1BCG) in 1921-22[10, 11].  The operating frequency was ≈1.3 MHz 
(λ≈230m).  At 1.3 MHz λ/4 = 189' so the 60' radius of the counterpoise corresponds 
to ≈0.08λ.  Figure 1.5 (taken from the Moyer & Wostrel[12]) shows a variety of 
possibilities, including inverted L's, T's, fans and umbrellas.  Some of the simplest 
top-loaded antennas are the "inverted-L" and the "T" which can be just a single 
wire suspended between two supports with a wire (the "down lead" or "lead-in") 
down to the shack as shown in figure 1.6 or  it can use a multi-wire top-hat and 
down-lead as shown in figure 1.7.  Figure 1.7 also shows a very large elevated 
ground system or counterpoise.  Very effective but few amateurs would build 
something on that scale! 

 

Figure 1.5 - Examples of early antennas [12]. 
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figure 1.6 - Example of an inverted L antenna.  From Ghirardi[13]. 

 

Figure 1.7 - A very large LF elevated ground system. From the Admiralty 
Handbook of Wireless Telegraphy,  1932 [14]. 
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Chapter 2 
Short Verticals 

2.0 Introduction 

The purpose of this chapter is to introduce the reader to the basic limitations of 
antennas using only a single vertical conductor.  Useful terms like radiation 
resistance (Rr), ground loss resistance (Rg), power lost in soil (Pg), equivalent 
height (h), etc, will be introduced and defined.  Simple methods for estimating Rr 
and the reactive parts of the feedpoint impedance are given and at the end there is 
a discussion of the very high voltages and currents which can be present even with 
relatively low input powers (Pi).  This is intended to serve as an introduction to the 
more antennas shown in later chapters. 

2.1 Equivalent circuit for a short vertical 

A equivalent circuit  for an electrically short vertical is shown in figure 2.1. 

 

Figure 2.1 - Equivalent circuit for Zin. 

Ra=Rr+Rg+Rloss represents the sum of radiation and loss resistances:    

• Pi=Ra∙Io2 
• Rr represents the radiated power 
• Rg represents the loss in the soil close to the base (r<λ/2) of the antenna 
• Rloss is the sum of conductor resistance  (Rc), Losses due to leakage across 

insulators (Rin), and corona loss at wire ends (Rcor). 

The inductor represents the energy stored in the magnetic component of the 
reactive near-field: 
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𝐋𝐋𝐋𝐋 = 𝐗𝐗𝐋𝐋
𝟐𝟐𝛑𝛑𝛑𝛑

      (2.1) 

The capacitor represents the energy stored in the electric component of the reactive 
near-field: 

𝐂𝐂𝐂𝐂 = 𝟏𝟏
𝟐𝟐𝛑𝛑𝛑𝛑𝐗𝐗𝐂𝐂

     (2.2) 

The feedpoint impedance is Zi=Ra+jXi=Ra+j(Xa-Xc).   In a short vertical operating 
well below resonance, Xc>>Xa so that Xi≈Xc with sufficient accuracy for most cases 
and  in most cases Ra <<Xc.   

Basically, a short vertical is a very small resistance in series with a large 
capacitive reactance!  

2.2 Definition of Rr in a lossless antenna 

The term "radiation resistance" (Rr) is used frequently so we need to be careful 
with our definition.   A definition of Rr associated with a lossless antenna, can be 
found in most antenna books.  A typical example is given in Terman[1]: 

"The radiation resistance referred to a certain point in an antenna system 
is the resistance which, inserted at that point with the assumed current Io 
flowing, would dissipate the same energy as is actually radiated from the 
antenna system.  Thus 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒓𝒓𝒓𝒓𝒓𝒓𝑹𝑹𝒓𝒓𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓 =  𝒓𝒓𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓𝑹𝑹 𝒑𝒑𝑹𝑹𝒑𝒑𝒓𝒓𝒓𝒓
𝑰𝑰𝑹𝑹𝟐𝟐

          

Although this radiation resistance is a purely fictitious quantity, the 
antenna acts as though such a resistance were present, because the loss of 
energy by radiation is equivalent to a like amount of energy dissipated in a 
resistance.  It is necessary in defining radiation resistance to refer it to 
some particular point in the antenna system, since the resistance must be 
such that the square of the current times radiation resistance will equal 
the radiated power, and the current will be different at different points in 
the antenna.  This point of reference is ordinarily taken as a current loop, 
although in the case of a vertical antenna with the lower end grounded, 
the grounded end is often used as a reference point." 
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2.3 Definitions for Rr, Pr, Pg and Rg over real ground 

 

Figure 2.2 - Pr and Pg. 

Figure 2.2 illustrates how the radiated power "Pr" and ground loss power "Pg" are 
determined for a monopole over real ground.  The dashed line represents a 
hypothetical hemispherical surface enclosing the antenna.  The hemisphere has a 
radius r:  r=λ/2 is usually chosen because it is approximately the outer boundary of 
the reactive near-field.  Pr is defined as the total power radiated through the 
hemisphere.  Pg is defined as the power passing into the ground surface and 
dissipated in the soil.        

For our purposes Rr and Rg are defined in terms of Pr and Pg: 

𝐑𝐑𝐑𝐑 ≡ 𝐏𝐏𝐑𝐑
𝐈𝐈𝐨𝐨𝟐𝟐    Ω (2.3)      𝐑𝐑𝐑𝐑 ≡ 𝐏𝐏𝐑𝐑

𝐈𝐈𝐨𝐨𝟐𝟐    Ω (2.4) 

2.4 Rr from NEC modeling 

Why do we care about Rr?  The efficiency (𝜼𝜼) of the antenna will be:  

𝜼𝜼 ≡ 𝑷𝑷𝒓𝒓
𝑷𝑷𝑹𝑹

= 𝑹𝑹𝒓𝒓
𝑹𝑹𝒓𝒓+𝑹𝑹𝑹𝑹+𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓

   (2.5)  

If we want an estimate of efficiency we need to have values for Rr, Rg and Rloss.  
We also need a value for Rr to calculate Pr from Io.  Values for Rr are shown here, 
values for Rg and Rloss will be derived in later chapters.  The vertical can be 
modeled over perfect ground to create a graph from which Rr can be read directly.   
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Figure 2.3 graphs Rr for a lossless #12 wire vertical for H=20'→100' at 137 and 475 
kHz.  We can see that Rr is very small even for heights of 100'.  A λ/4 vertical 
would have Rr≈36Ω but in LFMF antennas Rr is typically smaller by a factor of 
100 to 1000!   

 
Figure 2.3 - Example of Rr variation with vertical height (H).  

Conductors larger than #12  wire are often employed.  To explore this two models 
were used, the first was simply a vertical wire where the diameter was varied from 
0.081" (#12) to 6" but to simulate larger diameters and to reflect how larger 
diameters are actually implemented in practice, the model shown in figure 2.4 was 
used.  
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Figure 2.4 - A cage vertical. 

For diameters up to a few feet, eight wires are more than adequate but for very 
large diameters, say 10'-40', adding more wires to the cage may be worth doing. 
Using a larger diameter conductor or more wires in a cage has the immediate 
benefit of reducing conductor loss (Rc).  To simplify modeling of the cage vertical a 
source was placed at the ground end of each wire.  In a real antenna the bottom 
ends of the vertical wires would be connected together with a skirt wire like that at 
the top.  The bottom skirt wire is then driven against ground or, as shown in 
chapter 4, inductors are placed in each downlead and only one or two are driven.  
Figures  2.5 and 2.6 show the variation in Rr at 475 and 137 kHz as the conductor 
diameter (d) is varied from 0.080" (#12 wire) to 40' over a range of heights from 20' 
to 100'.  It's interesting to note that for 0.08"<d<4' Rr goes down slightly as d is 
increased!  Note that the contour for d=0.08" is for a solid #12 wire. The other 
contours are for a cage of #12 wires as shown in figure 2.4. 
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Figure 2.5 - Effect of conductor diameter on Rr at 475 kHz.  

 
Figure 2.6 - Effect of conductor diameter on Rr at 137 kHz.  
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2.5 Calculating Rr 

Rr can be calculated directly from the current distribution on the vertical.  The 
solid line in figure 2.7 represents the current amplitude on a short vertical.  The 
height can be expressed in a variety of units: feet, meters, fraction of a wavelength 
(0.1λ for example) or electrical degrees Gv.  For antennas shorter than Gv=30° 
(H<0.083λ) the straight line in figure 2.7 is a very good approximation for the 
current distribution.  If we sum (integrate) the product of the current and height 
we get an area A' (A'1 in figure 2.7) .  If we state the height in electrical degrees 
(Gv) A' will have units of Ampere-degrees.   

 
Figure 2.7 - current distribution on a short vertical, A'1=A'2  

Laport[2] shows how A' can be used to compute the E-field strength (E) at a given 
distance (1 km): 

E=kA'   [V/m] (2.5) 

When A' is in Ampere-degrees, k=0.00104 and E is the field strength in volts/meter 
at 1 km with Io=1A.  The interesting thing about equation (2.5) is that it tells us 
our signal strength (for a given base current Io) will be a direct function of A'.  If 
we can increase A' for the same base current the signal strength increases.  Since 
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A' is a function of both H and the current distribution, if we increase the height 
and/or the amplitude of the current as we go up the antenna then E, at a given 
distance, for a given Io, will increase.  As is shown in chapters 3 and 4, inductive 
loading and/or capacitive top-loading  can be used to increase A'.   Note that in 
figures 2.5 and 2.6 Rr is affected by the conductor diameter.  If we look at the 
current distribution near the top of the vertical we find that the current is very 
close to zero for a thin wire but is not zero for very thick ones.  This represents an 
increase in A' resulting in higher Rr.   

Rr can be expressed in terms of A' [ Ampere-degrees]: 

Rr=0.01215A'2 [Ω] (2.6) 

For a thin wire vertical with a triangular current distribution when Io=1A, A'=Gv/2 
and we can express Rr as: 

Rr≈0.003Gv2 [Ω]     (2.7) 

Equation (2.7) provides a quick estimate of Rr for short unloaded verticals.  The 
dashed line in figure 2.3 shows the comparison between NEC and equation (2.7).  
The correspondence is close. 

2.6 Effective height h  

The concept of "effective height" (h) is closely related to A'.  The following definition 
of is taken from Terman[2]: 

"The effective height of a grounded vertical-wire antenna is the height that a 
vertical wire would be required to have to radiate the same field along the 
horizontal as is actually present if the wire carries a current that is constant along 
its entire length and of the same value as at the base of the actual antenna." 

The solid line (A'1) in figure 2.7 shows the typical current distribution.  The dashed 
line (A'2) represents the same area as A'1 with constant current over H/2.  We say 
that the antenna has an "equivalent height" h=H/2.  More generally we can find 
the equivalent height by computing A' for an arbitrary distribution and then 
substituting a height which has the same A' with constant current along the 
vertical.  For example, in resonant λ/4 vertical h=(2/π)H≈0.64H.  Equivalent height 
is also used for verticals in a receiving array where the open circuit voltage at the 
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feedpoint  (Vo) is:  Vo=Eh.  Where E is the electric field vector parallel to the 
conductor in V/m and h is the equivalent height in meters.  

2.7 Xi and Xc from modeling 

Why do we care  about Xi or Xc?  As shown in figure 2.8, a inductor is needed at the 
feedpoint to resonate the antenna .  For resonance XL=Xi=Xc-Xa .  We need to 
know the value of that inductor but it's value is derived from Xi, so we also need to 
estimate Xi!  

 

Figure 2.8 equivalent circuit of a short vertical with a resonating inductor. 

Any practical inductor will have a series loss resistance (RL) and RL=XL/QL, 
where QL is the inductor Q.  In many amateur installations the efficiency of the 
antenna will be dominated by inductor losses so from a practical point of view very 
early in the design process we need to know how large an inductance will be 
needed. Values for Xi (Xi=Xc-Xa) for a vertical with height H and diameters from 
0.081" to 6" are shown in figures 2.9 and 2.10 for 630m and 2200m. 

Unlike Rr, Xi is very sensitive to conductor diameter.  At a given height, a larger 
diameter conductor will have less conduction loss but more importantly the size of 
the tuning inductor and it's associated losses is reduced.  
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Figure 2.9 -Variation in Xi with diameter at 475 kHz.

 

Figure 2.10 - Variation in Xi with diameter at 137 kHz. 
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2.8 Calculating Xc and Xa 

If modeling is not available we can calculate Xc and Xa.  It's possible to view a 
vertical as a single wire non-uniform transmission line[3] with an average 
characteristic impedance of Za and use expressions for the input impedance of 
either short or open-circuited transmission lines as suggested in figure 2.11.   

 

Figure 2.11 - O/C and S/C transmission lines with Zo=Za and length H. 

Za can be calculated from: 

𝐙𝐙𝐋𝐋 = 𝟔𝟔𝟔𝟔 �𝐥𝐥𝐥𝐥 �𝟒𝟒𝟒𝟒
𝐝𝐝
� − 𝟏𝟏�     (2.8) 

Where: d is the conductor diameter and H is the height in the same units. 

With Za we can calculate Xc and Xa from: 

𝐗𝐗𝐂𝐂 = 𝐙𝐙𝐋𝐋
𝐭𝐭𝐋𝐋𝐥𝐥𝟒𝟒

     (2.9) 

𝐗𝐗𝐋𝐋 = 𝐙𝐙𝐋𝐋 ∙ 𝐭𝐭𝐋𝐋𝐥𝐥𝟒𝟒    (2.10) 

Where H is the height in degrees or radians.  How good is this approximation?  The 
dashed lines in figure 2.9 provide a comparison.  For the #12 wire (d=0.081") the 
agreement is very good but for large diameters the calculation over-estimates Xi so 
the calculation has to be viewed as an approximation.   
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2.9 XL, RL and efficiency 

Adding a tuning inductor (RL+jXL) as indicated in figure 2.8:    

𝐐𝐐𝐋𝐋 = 𝐗𝐗𝐋𝐋
𝐑𝐑𝐋𝐋

   (2.11) 

Equation (2.11) shows the relationship between QL, XL and RL.  QL can range 
from 100 to >1000.  In general, for a given inductor, QL at 137 kHz will be ≈0.54 
QL at 475 kHz  or a little less if the QL at 475 kHz is near it's peak value (see 
chapter 6).  While very high QL inductors are possible most of this discussion will 
assume QL=200 at 137 kHz and 400 at 475 kHz because these values are practical 
with modest effort but keep in mind that higher values are possible as explained in 
chapter 6.   

Antenna efficiency (η) is: 

𝛈𝛈 = 𝐩𝐩𝐨𝐨𝐩𝐩𝐩𝐩𝐑𝐑 𝐑𝐑𝐋𝐋𝐝𝐝𝐫𝐫𝐋𝐋𝐭𝐭𝐩𝐩𝐝𝐝
𝐫𝐫𝐥𝐥𝐩𝐩𝐢𝐢𝐭𝐭 𝐩𝐩𝐨𝐨𝐩𝐩𝐩𝐩𝐑𝐑

=  𝐑𝐑𝐑𝐑
𝐑𝐑𝐫𝐫

=  𝐑𝐑𝐑𝐑
𝐑𝐑𝐑𝐑+𝐑𝐑𝐋𝐋+𝐑𝐑𝐑𝐑+𝐑𝐑𝐂𝐂+⋯

   (2.12)    

We can get a good feeling for the effect of loading inductor losses (RL) on efficiency 
by assuming Ri= RL+Rr (i.e. ignoring other losses) and calculate the efficiency as 
shown in figures 2.12 and 2.13.  QL=200 at 137 kHz and 400 at 475 kHz are 
assumed.  Figure 2.12 is truly bad news.  For example with H=20', at 137 kHz 
η=0.0024% and at 475 kHz η=0.20% and that doesn't consider any other losses!  
Increasing H to 100' makes a great difference.  At 137 kHz η=0.24%, still very low 
but a factor of 100 improvement.  With 100W output from the transmitter, to 
radiate the allowed maximum powers the antenna will have to have η> 2% at 475 
kHz and η>0.33% at 137 kHz.  There are horizontal dashed lines corresponding to 
these values in figure 2.12.  We can see from the graph (for a simple vertical) a 
minimum height of 45' on 630m and >100' on 2200m is needed.  Note, the efficiency 
scale is logarithmic, a small change in height means a large change in efficiency!  
As if we're not already depressed enough the y-axis in figure 2.12 can be converted 
to dB to better illustrate the effect of losses on our signals as shown in figure 2.13.  
The signal reduction for this range of heights is particularly severe on 2200m.  
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Figure 2.12 -Efficiency using a QL=200 and 400 loading inductors. 

These graphs make an important point: 

Maximizing height is a vital for improving efficiency! 
RL is the dominant loss throughout this range of H, especially as we go lower in 
frequency.  This observation is important because it tells us what our design 
priorities must be.  The value of RL is tied directly to the value of  XL (XL≈|Xc|) 
through QL.  The message is very clear:  

To reduce RL  we must reduce Xc! 
As will be shown in chapter 3, once height has been maximized, top-loading 
becomes the primary tool for reducing Xc. 
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Figure 2.13 - Efficiency stated in dB=10 LOG(efficiency) 

 

Figure 2.14 - Effect on efficiency from Rg and Rc.  
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To this point the effect of ground loss (Rg) and conductor loss (Rc) has not been 
included.  A sample including Rg+Rc  is shown in figure 2.14 for a vertical with 32 
radials over average ground (0.005 S/m, Er=13).  Note that at smaller values of H, 
where large values are needed for XL, the loss in RL dominates!  This is treated in 
more detail in chapter 5.   

2.10 Voltages and currents 

Unfortunately low efficiency is not the only bad news.  Base currents (Io) and 
feedpoint voltages (Vo) can be very high.  The following discussion is for a simple 
vertical without top-loading.  As shown in chapter 3, top-loading significantly 
reduces Io and Vo. 

 

Figure 2.15 - Base current (Io). 

Figure 2.15 shows base current (Io [Arms]) as a function of H.  These are the rms 
currents required to produce the allowed radiated power on each band.  Figure 2.16 
shows the Pi required to produce the allowed Pr on each band for a given loading 
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inductor Q.  If you wish to use a simple 20' vertical on 137 kHz radiating the 
maximum allowed power you'll have to provide Pi≈9kW!   

 

Figure 2.16 -Input power (Pi) needed to produce Pr. 

As shown in figure 2.1 the input current (Io) flows through Ra, +Xa and -Xc.  In 
short antennas Ra and Xa are very small compared to Xc, the capacitive reactance.  
As shown earlier Xi≈Xc and Xc will be very large:  

𝐕𝐕𝐨𝐨 = 𝐈𝐈𝐨𝐨𝐗𝐗𝐫𝐫    (2.13) 

The voltage across the feedpoint (Vo) will be very high as indicated in figure 2.17.  
A 20' vertical at 137 kHz with Pi≈9kW and Pr=0.33W will have Vo≈300kV!  Which 
is of course absurd, we cannot work with these voltage levels.  

Given the very modest radiating power allowed, these voltage levels can come as 
an unpleasant surprise when a hard won increase in transmitter power 
unexpectedly causes the loading coil to go up in flames or there is arcing across the 
base insulator or within tuning network components. 
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Figure 2.17 - Base voltage when radiating allowed Pr.  

 

Figure 2.18 - Vo with Pi=100W. 
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For most amateurs Pi≤100W is more realisitc but even at this greatly reduced 
power Vo can still be many kV as shown in figure 2.18. 

Why such a small reduction in Vo with a large reduction in Pi?  Io and Vo vary as 
the square root of the power ratio:  

𝐕𝐕𝟏𝟏
𝐕𝐕𝟐𝟐

= 𝐈𝐈𝟏𝟏
𝐈𝐈𝟐𝟐

= �𝐏𝐏𝟏𝟏
𝐏𝐏𝟐𝟐

    (2.14) 

Cutting the power in half only reduces Vo or Io by a factor of 0.707!  This further 
reinforces the advice to minimize Xc.  We must be very respectful of the voltages 
present on these antennas even at seemingly low power levels. BE CAREFUL! 

Summary 

This chapter makes the following points: 

...make the height as tall as practical.... 

...short verticals require large lossy tuning inductors... 

... inductor loss may totally dominate the efficiency... 

...the base voltages across the tuning inductors will be very high even at 
low power levels... 

References 

[1] Terman, Frederick E., Radio Engineers Handbook, McGraw-Hill Book 
Company, 1943.  This is a very useful book! 

[2] Laport, Edmund, Radio Antenna Engineering, McGraw-Hill, 1952.  You can 
find this one free on-line by Googling Edmund Laport. 

 [3] Schelkunoff and Friis, Antennas, Theory and Practice, page 426 



1 
 

Chapter 3 

Capacitive Top-Loading 
3.0 Efficiency 

The discussion in chapter 2 made it clear that the equivalent series resistance (i.e. RL) 
of the tuning inductor can be a major loss contributor.  A critical  part of achieving 
higher efficiency is the reduction of capacitive reactance at the feedpoint (Xi) because 
decreasing Xi reduces the size of the loading inductor and its associated RL.  In 
addition, often steps to reduce inductance can also increase Rr simultaneously.   

Efficiency (η) in terms of Rr and RL: 

𝜼𝜼 =  𝑹𝑹𝒓𝒓
𝑹𝑹𝒓𝒓+𝑹𝑹𝑳𝑳

= 𝟏𝟏

𝟏𝟏+𝑹𝑹𝑳𝑳𝑹𝑹𝒓𝒓
      (3.1) 

Clearly we want RL small and Rr large!  The reason for this rather obvious comment is 
that some top-loading schemes which reduce Xi also reduce Rr rather than increase it 
and at some point the efficiency may actually start to fall even though we continue to 
reduce Xi.  This happens in top-loading schemes with sloping wires with currents 
opposing the current in the main vertical conductor.  This is discussed in section 3.9.  
On most of the following graphs efficiency is stated either in percent (%) or as a 
decimal, although in some cases efficiency is given in -dB to illustrate the effect of 
losses or improvement on the signal for some change.   

For amateurs new to LFMF the first antenna needs to be as simple as possible to get 
on the air.  In the first part of this chapter  we're going to keep it simple and assume we 
have only one or two supports, a roll of wire and some insulators.  We'll begin with a 
example showing Rr, Xi and efficiency and then go on to explain why top-loading is so 
effective in reducing Xi and increasing Rr.  Subsequent sections give examples of 
more complex top-loading arrangements.  The discussion relies heavily on NEC 
modeling but, as in chapter 2, simple expressions and graphs for pencil and paper 
calculations are given.   
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At this point it will be assumed that the height (H) has been made as tall as practical 
and we are now turning to capacitive top-loading to improve efficiency.  Many different 
variables affect the capacitance introduced by the top-loading structure: 

• The number and/or length of umbrella wires  
• Whether or not there is a skirt tying the ends of the wires together  
• The location of the tuning inductor along the vertical conductor 
• conductor sizing  

As in chapter 2, tuning inductor QL=400 at 475 kHz and 200 at 137 kHz is assumed.  
Keep in mind that efficiency determined from only RL and Rr is an upper limit, i.e. the 
best we can do.  Adding more losses only reduces efficiency.  Once we've reduced RL 
as much as possible we can deal with other losses.  Reducing Xi has the further 
benefit of reducing the voltages and currents at the base.  For the most part, if you 
make some change in your antenna which reduces the inductance required to 
resonate the antenna that change is likely to improve your efficiency.  This is a useful 
guide when "fiddling"!  One important point, most examples have symmetric wire 
arrangements because it's easier to model but symmetry is not required!  Irregular wire 
lengths work fine.  In general we need to be opportunistic, connect top-loading wires to 
whatever support is available, even when the supports are at very different heights.  
This goes right back to Woodrow Smiths advice[1]: 

".... the general idea is to get as much wire as possible as high in 
the air as possible....." 

3.1 Efficiency with top-loading 

We can use the "T" antenna shown in figure 3.1 to illustrate how effective capacitive 
top-loading is.  Efficiency in percent (%) as a function of the length of the top wire (L) at 
475 and 137 kHz is shown in figures 3.1 and 3.2.   Note that there is a small sketch of 
the antenna under discussion on many of the graphs.  This serves as a reminder of 
which antenna we're talking about.  The notation "600m T1" is the title for that model in 
the NEC model files.  Just some bookkeeping. 
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Figure 3.1 - Efficiency at 475 kHz with base tuning.  

 

Figure 3.2 - Efficiency at 137 kHz with base tuning. 
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The L=0 line represents the case with no top-loading, just the bare vertical with a 
loading coil at the base.  In these models the value of the tuning inductor was adjusted 
to maintain resonance as L and H were changed.  #12 wire conductors are assumed.  
Even a small amount of top-loading increases efficiency.  As an example, for L=0 and 
H=20', η=0.19% at 475 kHz.  Keeping H=20' but adding a 40' top-wire, η=1.3%, a 
factor of 6.8X!  Taking L to 100' increases the efficiency by 18X.! 

Height and capacitive top-loading are keys to improving 
efficiency! 

3.2 Xi with top-loading 

To understand why the efficiency improves we need to look closer.  For the T antenna 
the efficiency improvement is driven by increasing Rr and decreasing Xi 
simultaneously.  This section explains what's happening with Xi and the next section 
looks at Rr.    

 

Figure 3.3 - Equivalent circuit for a vertical with capacitive top-loading. 
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Figure 3.3 shows an equivalent circuit for a vertical with capacitive top-loading. Ra, Xa 
and Xc represent the vertical, Xt represents the shunt capacitance introduced by the 
top-hat.  Xi and Xt are: 

𝐗𝐗𝐗𝐗 ≈ 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗
𝐗𝐗𝐗𝐗+𝐗𝐗𝐗𝐗

        (3.2)          𝐂𝐂𝐗𝐗 = 𝟏𝟏
(𝟐𝟐𝟐𝟐𝟐𝟐)𝐗𝐗𝐗𝐗

     (3.3) 

Where Ct is the capacitance corresponding to Xt.  Xt can be determined from modeling 
or in simple cases, calculated.  Xt is in parallel with Xc reducing Xi.  Xa is usually small 
in the short verticals and can be ignored with only a small effect on the approximations.  
Figures 3.4 and 3.5 show values for Xi associated with figures 3.1 and 3.2. 

 

Figure 3.4 -Xi at 475 kHz. 

The effect of even a small amount of top-loading on Xi is significant.  For example in 
figure 3.4, at H=20', with no loading Xi≈7900Ω.  However, when we add 40' of top-wire 
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Xi≈3000Ω which is a reduction of almost 3X.  Increasing L to 100' reduces Xi by 
another factor of two, Xi≈1500Ω.   RL will be reduced by the same factors which is part 
of the reason for the efficiency improvement. 

 

Figure 3.5 - Xi at 137 kHz. 

The graphs in figures 3.4 and 3.5 were obtained from NEC modeling.  We could also 
have derived this information with reasonable accuracy from calculations.    We can 
consider each of the horizontal wires connected to  the top of the vertical wire to be a 
single wire transmission line with an characteristic impedance of: 

𝐙𝐙𝐗𝐗 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 �𝟒𝟒𝟒𝟒
𝐝𝐝
�   [Ω]  (3.4) 

Where H is the height above ground of the wire and d is the wire diameter.  We are 
free to chose the units for H and d but both must use the same units.  
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As an example, a #12 wire (d=0.081" or 0.00675') at 50' will have Zt=617Ω.  With a 
value for Zt in hand we can calculate Xt for each wire from the open circuit 
transmission line equation (chapter 2, equation (2.9)): 

𝐗𝐗𝐗𝐗 = �𝟏𝟏
𝐍𝐍
� � 𝐙𝐙𝐗𝐗

𝐗𝐗𝐭𝐭𝐭𝐭(𝟏𝟏′)�     (3.5) 

When L is the physical length of the top-wire from the top of the vertical to the end, L' is 
the length in either degrees or radians at the operating frequency and N is the number 
of wires.   

 

Figure 3.6 - Example for calculation. 

We can use this approach to calculate Xt for N top-loading wires as shown in figure 
3.6.  In this figure N=3 but we will vary N from 0 to 8. If H=50' and L=50'.  L' at 475 kHz, 
where λ≈2072',  will be: 
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𝟏𝟏′ = 𝟏𝟏∙𝟏𝟏𝟑𝟑𝟑𝟑°

𝛌𝛌
= 𝟏𝟏.𝟑𝟑𝟔𝟔°/𝟑𝟑.𝟏𝟏𝟏𝟏𝟐𝟐 𝐫𝐫𝐭𝐭𝐝𝐝𝐗𝐗𝐭𝐭𝐭𝐭𝐫𝐫      (3.6) 

From equation (3.4) Zo=617Ω and from equation (3.5), for each wire: 

𝐗𝐗𝐗𝐗′ = 𝟒𝟒𝟑𝟑𝟏𝟏𝟒𝟒𝟒𝟒      (3.7) 

Using NEC we can determine Xi and Xt for each number of top-wires (N) and compare 
that to Xt'/N: 

Table 1 - Xt comparison. 

N Xi Xt NEC Xt calc error
0 3360 0 0 0.00
1 1788 3822 4037 5.63
2 1239 1963 2019 2.84
3 961 1346 1346 0.02
4 795 1041 1009 3.09
5 685 860 807 6.16
6 607 741 673 9.18
7 549 656 577 12.12
8 504 593 505 14.89

 

For N<6 the error is <6% which gives a reasonable estimate for the tuning inductor 
value (XL=Xi).  As N is increased the top-wires are closer together and the estimate of 
Xt is too low (i.e. the calculated value of Ct is larger than it should be).  More complex 
top-hats should be modeled with NEC. 
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3.3 Rr with top-loading 

Top-loading can also improve Rr as shown in figures 3.7 and 3.8.  In these figures H is 
varied from 20' to 100' and L is between 0 and 200'.  Rr increases substantially (up to 
4X!) as we add more top wire.  

 

Figure 3.7 - Rr for a T antenna with a single top-wire at 475 kHz. 

These Rr graphs are derived from NEC modeling.  Rr can be calculated but it's a bit 
trickier than the unloaded vertical case discussed in chapter 2.  The current along the 
vertical is not a simple triangle, it's trapezoidal and the dimensions of the trapezoid 
vary with top-loading.  Figure 3.9 gives an example of the current distribution along the 
vertical for several values of L.  Io is kept constant at 1A.   With no top-loading the 
current at the top of the vertical (It) is close to zero but as the loading is increased It 
increases. 
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Figure 3.8 - Rr for a T antenna with a single top-wire at 137 kHz. 

Equation (2.6) from chapter 2 is still valid: 

Rr=0.01215A'2 [Ω]  (3.8) 

But for trapezoidal current distributions equation (2.7) must be modified: 

𝑨𝑨′ = 𝑮𝑮𝒗𝒗
𝟐𝟐
�𝑰𝑰𝑰𝑰
𝑰𝑰𝑰𝑰

+ 𝟏𝟏�   [Ampere-degrees] (3.9) 

Gv=electrical height in degrees. 
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Figure 3.9 - Current distribution on the vertical part of a "T" antenna. 

As shown in figure 3.10, inserting equation (3.9) into (3.8) we can create a universal 
graph for  Rr  as a function of antenna height in degrees (Gv) with the current ratio It/Io 
as a parameter.  The It/Io ratio is varied from 0 (no top-loading) to 1, which 
corresponds to heavy top-loading and constant current on the vertical radiator (i.e. 
It/Io=1).  As It/Io goes from zero to 1, Rr increases by a factor of 4X.  Equations (3.8) 
and (3.9) are valid for Gv<45 degrees. 
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Figure 3.10 - Rr as a function of height in degrees. 
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For convenience we can convert the graphs in figure 3.10 to height in feet at 137 and 
475 kHz as shown in figure 3.11. 

 

Figure 3.11 - Rr as a function of height in feet. 

If we know It/Io then we can simply read Rr off the graph.  Finding It/Io with modeling is 
easy but manually it's a bit tricky.  I have never seen a discussion on calculating It/Io so 
on a hunch I did an experiment with NEC using the antenna shown in figure 3.6 with N 
varying from 0 to 8, H varying from 20' to 100' and L varying from 0 to 80'.  This was 
done a 137 and 475 kHz.  At each data point I recorded Xi.  With no top-loading (N=0) 
Xi=Xc.   Using that value for Xc and the value for Xi at each data point, I calculated Xt 
from: 

𝐗𝐗𝐗𝐗 = 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗
𝐗𝐗𝐗𝐗−𝐗𝐗𝐗𝐗

     (3.10) 
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Figure 3.12 - Xc/Xt ratio. 

I also recorded the value for It/Io at each point and then graphed It/Io versus Xc/Xt as 
shown in figure 3.12.  The single line on the graph represents all values of H, L and 
frequency!  This  was a complete but very pleasant surprise!  The curve is for the 
antenna with 8 radial top-wires but The individual values for N<8 lie along lower 
sections of the same curve (i.e. smaller Xc/Xt).   The increase in Rr associated with a 
given value for Xc/Xt is shown in figure 3.13. 
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Figure 3.13 - Increase in Rr with top-loading (Xt). 

We can calculate values for Xc and Xt using Equations (2.8), (2.9), (3.4) and (3.5), take 
the ratio and determine It/Io from figure 3.12.  With a value for It/Io we can then go to 
figure 3.10 or 3.11 or use equations (3.8) and (3.9) to get a good approximation for Rr.  
One thing to notice in figures 3.12 and 3.13 is the flattening of the curves for Xc/Xt>2.  
Adding more top-loading will initially increase Rr substantially but there is a point of 
vanishing returns.  However, as we increase Ct further (i.e. make Xt smaller) we still 
get an almost linear reduction in Xi which reduces XL and the associated inductor loss. 

The small electrical size of our antennas allows us to simplify the expression for Xc/Xt.  
At 475 kHz 100' is ≈0.05λ, which corresponds to 18⁰ or 0.314 radians.  The 
Tan(0.314)=0.325, with is a difference of only 3%.  This difference becomes even 
smaller for shorter lengths or lower frequencies.  We can use this to replace Tan(H') 
with H in radians (H'). 
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𝐗𝐗𝐗𝐗 ≈ 𝐙𝐙𝐭𝐭
 𝟒𝟒′   and 𝐗𝐗𝐗𝐗 ≈ �𝟏𝟏

𝐍𝐍
� �𝐙𝐙𝐗𝐗

𝟏𝟏′�  

𝐗𝐗𝐗𝐗
𝐗𝐗𝐗𝐗

= �𝐙𝐙𝐭𝐭
𝐙𝐙𝐗𝐗
� �𝟏𝟏′

𝟒𝟒′� = �𝐙𝐙𝐭𝐭
𝐙𝐙𝐗𝐗
� �𝟏𝟏

𝟒𝟒
�  (3.11) 

Note! The right side of equation (3.11), the ratio L/H, L and H can be in any units as 
long as both use the same units which is the same rule for Za and Zt.  It is not 
necessary to convert H and L into radians (H' and L')! 

For convenience we can restate: 

𝐙𝐙𝐭𝐭 = 𝟑𝟑𝟑𝟑 �𝐥𝐥𝐭𝐭 �𝟒𝟒𝟒𝟒
𝐝𝐝
� − 𝟏𝟏�   [Ω]    (2.8) 

𝐙𝐙𝐗𝐗 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 �𝟒𝟒𝟒𝟒
𝐝𝐝
�   [Ω]  (3.4) 

𝐗𝐗𝐗𝐗
𝐗𝐗𝐗𝐗

= �𝐙𝐙𝐭𝐭
𝐙𝐙𝐗𝐗
� �𝟏𝟏

𝐍𝐍
� �𝟏𝟏

𝟒𝟒
�  (3.11) 

Just remember to use the same units throughout! 

Equations (2.8), (3.4) and (3.11) all include approximations so we need to check the 
effect of these on the computed value for Xc/Xt.  We can do this by comparing the 
values derived from NEC modeling to those derived from the equations.  figures 3.14 
and 3.15 make that comparison using the figure 3.6 antenna with H=20' and 80' and  
the number of top wires (N) set to 2 and 8.   In table 1 we saw that the error in Xt was 
small for N<7 and we see the same behavior in figures 3.14 and 3.15.  For small 
values of N the agreement is quite good.  For larger values of N Equation (3.11) over 
estimates Xc/Xt but for values of Xc/Xt>3 the It/Io curve flattens so the error in Rr 
prediction is not all that great.  This illustrates the point that manual calculations work 
fine for simple top-loading arrangements but modeling is really best way for more 
complicated arrangements. 
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Figure 3.14 - Comparison of Xc/Xt derived from NEC and computation for H=20'. 

 

figure 3.15 - Comparison of Xc/Xt derived from NEC and computation for H=80'.  
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3.4 More realistic antennas 

In the real world we won't have a perfectly symmetric T.  The realities of a given QTH 
force us to fit within the available space and supports.  This section explores the effect 
on efficiency of deviations from ideal.   

Whenever you stretch a wire between two supports you must have at least some sag 
to limit wire tension in regions subject to ice loading!  Another problem arises when a 
wire is suspended between trees.  Trees move in the wind and two trees 50'-100' apart 
can be oscillating in opposite directions at the same moment.  Both of these 
considerations can require significant sag in a top-wire.  Figures 3.16 and 3.17 
illustrate the effect of sag on efficiency.  In this example the spacing of the support is 
100' with the downlead attached at the center.  The ends of the top-wire are fixed at 50' 
while the height of the center is varied from 25' to 50'.  Certainly 25' of sag is excessive 
but 5' (H=45') is not.  With 5' of sag in the 475 kHz antenna the efficiency drops by 
≈1.5%.  At 137 kHz the efficiency drops from 0.23% to 0.20%.  Clearly we want to use 
as little sag as possible while still meeting the mechanical requirements.   

In some installations it may be more convenient to attach the downlead at a point other 
than the center of the top-wire.  As shown in figures 3.18 and 3.19, we can attach the 
downlead anywhere along the wire and we are also free to place the ground end of the 
downlead pretty much where we want with little effect on efficiency.  Note that in these 
two figures the efficiency scale is expanded which tends to magnify the differences 
which are actually rather small.     

In some cases the top-wire may not be directly over the point on the ground where we 
would like connect the downlead.  As figures 3.20 and 3.21 show, we can move the 
downlead ground point many feet off the side with almost no effect on efficiency.  

Using supports already on hand (trees, poles, structures), the two ends of the top-wire 
are likely to be at different heights.  Figures 3.22 and 3.23 illustrate the effect top-wire 
ends at different heights.  The horizontal axis on the graphs shows the end height 
offset from the center height, i.e. for example if one end is 10' higher than the center, 
the other end will be 10' lower than the center.   This means the top-wire slopes 
downward from one end to the other.  As can be seen in the graphs, for a given center 
height (50' in this example), when we raise one end the efficiency goes up even though 
we've lowered the other end.   
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Figure 3.16 - Effect of sag on efficiency at 475 kHz.  

 

Figure 3.17 - Effect of sag on efficiency at 137 kHz. 
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Figure 3.18- Effect of downlead attachment point, 475 kHz. 

 

Figure 3.19 - Effect of downlead attachment point, 137 kHz. 
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Figure 3.20 - Effect of downlead ground end offset, 475 kHz.  

 

Figure 3.21 - Effect of downlead ground end offset, 137 kHz.  
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Figure 3.22 -Effect of slope in the top-wire, 475 kHz.  

 

Figure 3.23 - Effect of slope in the top-wire, 137 kHz. 
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Figure 3.24 -Single support with sloping top-wires, 475 kHz. 

 

Figure 3.25 - Single support with sloping top-wires, 137 kHz. 
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Sometimes only one support will be available and the top-wires will have to slope 
downward from the center supports as indicated in figures 3.24 and 3.25.  In this 
example the height of the vertical is assumed to be 50' and the two top-wires are 50' 
long.  We see that the efficiency is a strong function of the height of the top-wire ends.  
The higher the better!  This is a case where the current in the top-wires has a 
component that partially cancels the current in the vertical, reducing Rr. 

In most cases the available spacing between the supports will be limited.  For example, 
suppose L is limited to 100' and H=50', we can still improve things a bit by adding drop-
wires to the ends of the top-wire as shown in figure 3.26 which also  shows how the 
efficiency changes as we vary the drop-wire lengths.  When there are no drop wires 
the efficiency is about 17% but when  the drop-wires are 25-30' long (roughly H/2) the 
efficiency peaks about 3.6% higher.  The current in the drop-wires is ≈180˚ out of 
phase with the current in the vertical so there is some cancelation which reduces Rr 
while reducing RL.  Initially, as we make the drop wires longer Rr falls somewhat but 
Xc falls more rapidly until a peak in efficiency is reached.  Note however, that the 
length of the end-loading wires is not very critical.   

 

  Figure 3.26 - T vertical with end-loading wires.  L=100', H=50'. 
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We don't have to use a straight wire for top-loading, it may be bent as shown in figure 
3.27.  When the top-wire center angle is 180° the loading reactance for resonance is 
1246Ω and the efficiency is about 16.7% (including only the inductor loss!).  When the 
center angle is changed to 90°, the loading reactance increases only slightly to 1255Ω 
and the efficiency decreases to 16.6%, a very small change.  It appears that the center 
angle for the top-wire is not at all critical and has to made quite small (<45°) before it 
matters very much. 

 

Figure 3.27 - 90° between top-loading wires. With and w/o skirt wire. 

Note that when the top-wire is bent it may be possible to add a "skirt" wire as shown on 
the right (wire 4).  For a 90° center angle adding the skirt wire reduces the loading 
reactance to 904Ω and the efficiency increases to 23.7%.  Adding the extra wire is well 
worth doing!  It should be pointed out that wire 1, the vertical, does not have to come 
straight down to ground.  As shown earlier the wire can be slanted towards a more 
convenient point.  In figure 3.27 wires 2, 3 and 4 constitute a loop "top-hat".  The 
downlead could be connected at any point on the loop with only modest effect on 
efficiency!  To generalize a bit further, if multiple support points, at different heights, are 
available a loop can be strung between these points to form a top-hat.  An irregular 
top-hat works just fine.  Exploit the opportunities at your QTH! 

At HF we would expect the radiation pattern for the inverted-L to have significant 
asymmetry.  However, the antennas in figures 3.15 through 3.27 are nowhere near self 
resonance without a loading inductor.  The far-field patterns show very little difference 
between the antennas, i.e. circular to a fraction of a dB.  The message is that these 
antennas are very tolerant of mechanical variations.   
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3.5 Using a Tower for support  

A tower can be used as a support or as a radiator.  Exciting the tower will be discussed 
in chapter 4.  The immediate question is: what is the effect of coupling between a 
grounded tower and the vertical downlead?  The simple answer is that it will reduce the 
efficiency somewhat but usually only a few percent because the tower, even with 
multiple Yagis for loading, is unlikely to be resonant anywhere near 475 kHz, not to 
mention 137 kHz.  The coupling can be minimized by spacing the top anchor point as 
far out from the tower as possible, several feet would be helpful.  Pulling the bottom 
and/or the top of the downlead away from the tower as shown in figure 3.28 can also 
help.  The effect on a specific installation is best explored with modeling. 

 

Figure 3.28 - Using a grounded tower as a center support.\ 

 

tower→ 
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3.6 More complicated top-loading 

While a vertical with a single top-wire is attractive, we're not limited to a single wire for 
top-loading.  More complex top-loading can substantially improve efficiency.  For 
example, we can add spreaders and  use two or more wires as shown in figure 3.29.  
One note, the T and L models for this study show only a single conductor down-lead.  
When multiple top wires are used, the down-lead can also have multiple wires for at 
least part of its length which can make a small improvement in efficiency by reducing 
Rc.  One of the problems with spreaders is that they tend to rotate and twist.  Extra 
downleads can act as stabilizers.  Light non-conducting lines can also be used to 
stabilize the spreaders.  

Going from a single wire to two wires with 10' spreaders, makes a huge difference.  For 
example, with 100' top-wires and H=50': for one wire the efficiency is ≈17% but with 
two wires and 10' spreaders that jumps to ≈28% and when we go to 30' spreaders the 
efficiency is ≈34%.  However, there are practical limits to spreader length.  10' is easy, 
20' takes some doing but spreaders longer than 20' are challenging.  When the 
spreader length is increased to 20' the efficiency increases to 32%, significant but not 
nearly as great as the initial increase.  For two wires 20' spacing is well into the region 
of vanishing returns and it's time to consider adding another wire or two.   Figure 3.30 
compares examples using 2, 3, 4 and 5 wires with a spreader length of 20' and an 
overall length of 100'.  Clearly adding more wire to the hat reduces Xc and leads to 
higher efficiency but as can be seen in figure 3.30, for a given spreader length the rate 
of improvement falls pretty quickly and in this case using more than five wires gains 
very little.  Adding more wire to the top-hat helps to reduce Xc but there's an important 
drawback to more wire up in the air: if you live in a area with ice storms, the antenna 
becomes much more vulnerable.  From figures 3.29 and 3.30 it's clear that the 
effective capacitance (Ct) of a top-hat with parallel wires depends on the separation 
between the wires.  Unfortunately the calculations for Xt shown in section 3.2 are not 
useful for closely spaced wires.  An excellent and very complete paper on calculating 
the capacitances associated with LF-MF loaded verticals, written in 1926 by Fredrick 
Grover, is available on-line[2].  Excerpts from the Grover paper can be found in 
Terman[3].  In general it's much easier to use modeling for more complex top-loading 
structures.   
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Figure 3.29 -Comparison of top-loaded verticals using a single wire or 2 horizontal 
wires with 10', 20' or 30' spreaders.  

 

Figure 3.30 - Examples using more wires in the top-hat. 
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  As shown in figure 3.31 in a multi-wire top-hat it may be possible to dispense with the 
center spreader, reducing the weight at the mid-point of the hat.  The efficiency falls by 
≈2% compared to the flat top but the reduction in sag due to the decrease in center-
weight may compensate for that.  One problem with the "bow-tie" arrangement, 
especially if the ends with the spreaders are supported only by a single line, is the 
tendency to twist in the wind.  With a spreader at the midpoint and a fan for the 
downlead, twisting is much less of a problem.  For the bow-tie configuration you will 
have to add some restraining lines at the ends of the spreaders.  

 

Figure 3.31 - 3-wire top-hat examples. 
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3.7 Umbrella top-loading  

 

Figure 3.32 - Example of an "umbrella" for capacitive top-loading. 

We've seen how helpful capacitive loading with various long top-wires can be.  Now 
let's extend our investigation to symmetric top-hats which resemble umbrellas as 
shown in figure 3.32.  Top-loading structures like this are often used when only one 
support (the vertical itself for example) is available. 

There are many ways to construct an umbrella: 

• Use several rigid radial supports like a wagon wheel.  For example, the supports 
can be aluminum tubing or F/G poles supporting wires or some combination of 
the two.  The practical limit for a self-supporting structure is probably a radius of 
20' or so.  Using the hub(s) and spreaders from an old HF quad can be a very 
simple way to fabricate an umbrella.  

• Set up a circle of poles (3 to 8) at some distance from the base of the vertical to 
support the far ends of the umbrella wires.  The radial dimension of the umbrella 
could be quite large but the length of the poles, which establishes the height of 
the outer rim of the umbrella, is a limiting factor.   

• Attach a number of wires to the top of the vertical, sloping them downward at an 
angle towards anchor points located at some distance from the base of the 
vertical. 

• You can add sloping wires to the outer rim of a horizontal umbrella to increase 
the loading.   
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• You do not have to connect the outer ends of the umbrella radial wires together 
with a "skirt" wire but a skirt-wire significantly increases the loading effect of an 
umbrella of a given radius.   

• While most of this discussion shows symmetric umbrellas, symmetry is not 
required.  Supports at different distances with different heights can also be used 
to good effect.  Take advantage of what's on site! 

For much of the modeling an 8-radial umbrella with a skirt wire is used.  This 
represents a compromise.  As few as three wires (with a skirt!) can make a useful 
umbrella but the performance improves substantially as you go from three to four and 
then eight wires.  While the jump from four to eight wires gives a useful improvement 
the law of diminishing returns starts to set in and sixteen wires is about the useful limit.  
It's also possible to add more skirt wires inboard of the outer skirt wire.  These are 
issues best explored with modeling. 

Figure 3.33 is a generic sketch of the dimension designators used in the discussion. 

 

Figure 3.33- Definition of antenna dimensions. 

Where: H=vertical height, r=radius of a flat umbrella, C=depth of a sloping umbrella, 
M=distance from the base to an anchor point,.  When the available space restricts the 
radius to the anchors (M), as shown, a post can be used to increase the slope angle. 
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3.8 Horizontal or flat umbrellas 

Figure 3.34 shows how Rr and Xc vary with H and r for a simple horizontal umbrella. r 
is varied from 0 (no umbrella) to 10' and then to 50'.  We can see that even an umbrella 
radius as small as 10' makes a marked improvement in both Rr and Xc.   

 

Figure 3.34 - Rr & Xc as a function of H and r. 

Taking the data from figure 3.34 and assuming QL=400 we get the efficiencies shown 
in figure 3.35.  The larger the umbrella, the better the efficiency!  Figure 3.36 compares 
T top-loading to umbrella loading.  A circular umbrella with r=20' is almost the same as 
a 3-wire T with 10' spreaders and 100' wires. 
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Figure 3.35 - Efficiency as a function of H and r. 

 

Figure 3.36 - Comparison between T and symmetric top-loading umbrellas. 
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3.9 Sloping wire umbrellas   

 

Figure 3.37 - An example of a sloping wire umbrella. 

A large horizontal umbrella may not be practical.  A alternative is to connect the 
umbrella wires to the top of the vertical and slope them downwards towards ground as 
shown in figure 3.37 which includes plots of Rr for H=50' over  a range of anchor point 
distances (M) and umbrella depths (C).  Other heights can of course be used and the 
results would be similar.  The angle between the umbrella wires and the top of the 
vertical is: θ=ATAN(M/H).  The larger we make M, the larger θ becomes.  For a 
horizontal umbrella θ=90˚.  As shown in figure 3.34, with a flat umbrella Rr increases 
steadily as the radius is increased but in the case of a sloping umbrella as we increase 
either M or C, Xi goes down but Rr doesn't increase continuously.  For a given M, as 
we increase C, Rr rises initially, reaches a maximum and then decreases.  This 
decrease in Rr is due to the vertical component of umbrella current opposing the 
current in the vertical.   
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Figure 3.38- Variation of RL with A and C. 

RL as a function of M and C is graphed in figure 3.38.   We can take the information in 
figures 3.36 and 3.37 to create a graph of RL/Rr as shown in figure 3.39.  We can see 
the RL/Rr ratio continues to decrease well beyond the peak for Rr as we increase C 
but a point is reached (C≈0.4-0.5 H) where the ratio flattens out.  Beyond C≈0.4 there's 
no point on continuing to expand the umbrella. 

We can take the numbers in figure 3.38 and use equation (3.1) to determine the 
efficiency as shown in figure 3.39 which indicates there is a optimum value for C with a 
given value of M.  However, the optimum is very broad so the value for C is not critical.  
Figure 3.40 illustrates how increasing the distance to the anchor points increases 
efficiency.  
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Figure 3.39 - Variation of RL/Rr with M and C. 

 

Figure 3.40- Efficiency as a function of M and C. 
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3.10 Combining sloping and flat umbrellas 

There are practical size limits for a horizontal umbrella but we can improve the 
performance by adding sloping wires to the outer perimeter to form a composite 
umbrella.  An example where the "sloping" wires actually hang straight down from the 
horizontal part of the umbrella is shown in figure 3.41.  Due to the opposing currents in 
the drop wires Rr decreases as the drop wire length (C) is made longer.  However, RL 
is also decreasing due to a falling Xc.  The effect of C on efficiency is shown in figure 
3.41. 

 

Figure 3.41 - Efficiency of a horizontal umbrella with vertical drop wires on the 
perimeter of the umbrella. 

Adding drop wires allows an increase in efficiency of nearly 6% at C≈0.35H in this 
example.  The peak is also quite broad so C is not critical.  This type of umbrella might 
work very well in an urban backyard. 
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If there is space to move the anchor points for the drop wires further away  then the 
drop wires can be sloping as shown in figure 3.42, where H=50' and M is kept constant 
at 50' as r is varied.  

 

Figure 3.42 - Efficiency for a combined sloping and flat umbrella. 

The r=0' trace represents the case of only sloping umbrella wires.  The r=10' and 20' 
traces show the improvement gained by adding some horizontal component to the 
umbrella. For r=0', η≈19% but when r is increased to 10', η≈27% and for r=20', η≈35%.  
These are very worthwhile improvements which indicates that adding even a small 
horizontal section to the umbrella is worthwhile. Compared to figure 3.41 where the 
drop wires were vertical, sloping the drop wires away from the vertical shows an 
improvement in efficiency of ≈4%. 

 

 



39 
 

3.11 Rc and Conductors 

Copper or aluminum wire and aluminum tubing are typical conductors.  The wire may 
be bare or insulated. The choice of conductor is usually a matter of what's on hand 
and/or what's economical.  Insulated wire intended for home wiring is of often the most 
economic choice for copper wire.  Aluminum electric fence wire, available in #14 or #17 
gauges, is a less expensive choice but aluminum has greater resistance than copper 
and because soldering aluminum is often not satisfactory, joints require special 
attention.  We can work around the resistance issue by using multiple, well spaced, 
wires in parallel.   

The resistance of a wire at DC (Rdc) is: 

𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒍𝒍
𝝈𝝈𝑨𝑨𝝈𝝈

    [Ω]  (3.12) 

Where l is the length of the wire, Aw is the cross section area and σ is the conductivity 
in Siemens/meter [S/m].  For copper σ=5.8X107 [S/m] and for aluminum  σ=3.81X107 
[S/m].  Rdc for copper wire can be found in wire tables.  

Unfortunately the AC resistance of the wire (Rac) will be substantially different from 
Rdc due to two effects: skin effect and the effect of non-uniform current distribution.   

 

Figure 3.43 - Skin effect. 
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The cause of skin effect is the magnetic fields associated with the current flowing in the 
conductor as shown in figure 3.43.  The dashed lines represent magnetic field lines 
resulting from the desired current flowing in the conductor.  The solid lines represent 
currents induced in the conductor.  At RF frequencies the current is concentrated in a 
very thin layer at the surface of the wire, hence the term "skin effect".  Because the 
current is concentrated in a thin layer the resistance of a round conductor will 
proportional to the diameter (d), i.e. the wire circumference, rather than the cross 
sectional area.  Changing from a solid conductor to a tubular one greatly reduces the 
amount of metal required.  Typically solid wire up to #8 (d=0.13") is used.  To lower 
losses further either two or more wires in parallel or thin wall aluminum tubing are 
used.  Aluminum irrigation tubing, in sizes from d=2" to 6", is widely available, at least 
in rural areas.  The larger sizes can be self supporting or need only limited guying.  
Making the vertical from tubing is very helpful when no other supports are available. 

The "penetration" or "skin" depth δ is expressed by: 

𝛅𝛅 = 𝟏𝟏
�𝟐𝟐𝛑𝛑𝛑𝛑𝟐𝟐

 [m]    (3.13) 

Where:  

σ is the conductivity in [S/m]. 

μ is the permeability of the material which for Cu and Al =4πx10-7 [H/m]. 

f is the frequency [Hz]. 

The skin depth in mils for copper is: 

𝛅𝛅 = 𝟐𝟐.𝟑𝟑𝟑𝟑𝟐𝟐
�𝟐𝟐𝐌𝐌𝟒𝟒𝐌𝐌

  [mils]  (3.14) 

At 137 kHz δ=7.03 mils  (0.00703") and at 475 kHz δ=3.78 mils.   

The resistance of the wire, Rc, can be represented by the product of the DC resistance 
(Rdc) and a factor attributed to skin effect (Ks).   

𝐑𝐑𝐭𝐭𝐗𝐗 = 𝐑𝐑𝐝𝐝𝐗𝐗 ∙ 𝐊𝐊𝐫𝐫   (3.15) 

For the wire sizes typically used in tuning inductors, d/δ> 5, and Ks becomes a linear 
function of d/δ which can be closely approximated with a simple expression:   
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𝑲𝑲𝑲𝑲 = �𝟏𝟏
𝟒𝟒
� �𝑹𝑹

𝜹𝜹
+ 𝟏𝟏�    (3.16) 

which is graphed in figure 3.44.  Note that Ks is only a function of the wire diameter d 
and the skin depth δ at the frequency of interest (δ∝1/√f).   

 

Figure 3.44 - Skin effect factor Ks versus wire diameter in skin depths (d/δ). 
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Table 3.2 gives Ks for typical wire sizes at 137 and 475 kHz. 

Table 3.2 - Ks for typical wire sizes. 

 137 kHz 475 kHz 
Wire # Ks Ks 

8 4.82 8.76 
10 3.87 7.00 
12 3.10 5.55 
14 2.53 4.49 
16 2.06 3.61 
18 1.15 1.93 

 

The current on antenna conductors will usually be non-uniform, i.e. the current 
amplitude will vary from one point to another.  When the antenna is large enough to 
approach self-resonance the current distribution can be close to sinusoidal as shown in 
figure 3.45A.  For small LF-MF antennas however, the current will be approximately 
linear as indicated in figure 3.45B. 

 

Figure 3.45 - Antenna current examples. 
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Io= rms current at the high current end of the wire.  Re= effective resistance of the wire 
which results in the same power dissipation for a given Io as the actual power 
dissipation on the wire.  Re/Rac is the resistance ratio due to non-uniform current 
distribution. 

A graph of Re/Rac for a linear current distribution is given in figure 3.46.   

 

Figure 3.46 - Re/Rac versus It/Io. 

For a vertical with no top-loading, It=0 and Re/Rac=1/3.  More detailed information 
on Ks can be found in chapter 6. 

The cost of the conductors may be a concern.  For copper σ=5.8x107 [S/m].  Aluminum 
has somewhat lower conductivity, σ=3.81x107 [S/m], but is much less expensive and a 
better strength to weight ratio.  
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Replacing copper with aluminum: 

𝐑𝐑𝐗𝐗𝐀𝐀𝐥𝐥
𝐑𝐑𝐗𝐗𝐂𝐂𝐂𝐂

= �
𝛑𝛑𝐀𝐀𝐥𝐥
𝛑𝛑𝐂𝐂𝐂𝐂

= �𝟏𝟏.𝟏𝟏𝟏𝟏
𝟏𝟏.𝟏𝟏

= 𝟑𝟑.𝟏𝟏𝟏𝟏  (3.17) 

The conductor loss (Pc) penalty of switching from copper to aluminum is ≈19%.   

Up to this point we've not considered ground loss (Rg) or conductor loss (Rc).   
Including these losses the efficiency becomes: 

𝜼𝜼 =  𝑹𝑹𝒓𝒓
𝑹𝑹𝒓𝒓+𝑹𝑹𝑳𝑳+𝑹𝑹𝑹𝑹+𝑹𝑹𝑹𝑹

      (3.18) 

Rg will be discussed in chapter 5 but to properly evaluate the effect of conductor loss 
on efficiency we need to include it at this point.  Figure 3.47 shows a "T" antenna with 
multiple downleads.  The height is 50' over average ground.  The top-wire is 100' and 
there are thirty two 50' buried radials.  We want to know the effect of wire size on 
efficiency and the effect of using multiple downleads.  A key question is "how much 
effect does the conductor loss have on efficiency?"  From equation (3.18) we can see 
that the value for Rc matters but also its value in proportion to the sum of Rr+RL+Rg.  
As the conductor size in increased Rc will go down but at some point Rc becomes 
small compared to sum of the other terms so further reductions in Rc have limited 
effect.  

Figure 3.47 shows the effect of wire diameter (d) on efficiency for different numbers of 
downleads.  At any given point all the wires have the same diameter.  d=0.01" 
corresponds to a #30 wire.  d=0.150" corresponds to a #6 wire.  From a practical point 
of view wire sizes ranging from #18 to #8 are the most likely, with #12 a very common 
choice.  Figure 3.47 also shows that using more downleads improves efficiency, no 
real surprise there, but the graph also shows how the initial increase in wire size 
rapidly improves efficiency but the curve soon flattens out as the point of vanishing 
returns approaches.  Note that for larger wire sizes the efficiency only changes by less 
than 1%!   
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Figure 3.47 - Efficiency versus wire diameter for 1, 2 or 3 downlead wires. 

Due to idiosyncrasies in wire pricing often there isn't an direct linear variation in wire 
cost with the amount of copper between different wire sizes but we can still graph the 
volume of wire as shown in figure 3.48 to give us an idea on the cost impact of different 
wire sizes and downlead numbers.  What these graphs seem to be telling us is that the 
very common use of #12 wire is actually a very practical choice although we could 
save a bit by going down to #16 wire.   

Insulated copper wire intended for home wiring is often used for antennas and ground 
systems, both elevated and buried.  This wire is readily available at hardware and 
home improvement emporiums and often significantly less expensive than the 
equivalent wire without insulation (bare).  Among amateurs there has been a recurring 
discussion whether it's necessary or even  useful to strip the insulation.  Stripping a few 
hundred feet isn't a serious chore but if you're laying out a radial field with thousands of 
feet of wire then stripping would be a chore.   
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For this example we will assume the antenna in figure 3.47 with only one downlead. 

 

Figure 3.48 - Relative wire volume ($) versus wire size and downlead number.  

1) The insulation introduces no additional loss even when the wire has been exposed 
to sun and weather for many years. 

2) The insulation does introduce some dielectric loading which reduces Xi slightly, from 
1245Ω to 1209Ω.  This means that XL is slightly smaller reducing RL and increasing 
efficiency by ≈0.5% when QL=400. 

3) The disadvantage of leaving the insulation on the wire is the increase in weight and 
diameter.  The increase in diameter can lead to greater ice loading. 
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3.12 Voltage, current and power dissipation 

At the end of chapter 2 we looked at the voltages (Vo) and currents (Io) at the 
feedpoint of a vertical without top-loading.  The results were discouraging to say the 
least!  Now it's time to see what happens to Vo and Io when top-loading is present.   

Io is determined by the radiated power (Pr) and the radiation resistance (Rr): 

𝐈𝐈𝟏𝟏 = �𝐏𝐏𝐫𝐫
𝐑𝐑𝐫𝐫

     (3.19) 

As explained in chapter 1, the maximum radiated power (Pr) is limited to  1.67W on 
630m and 0.33W on 2200m.  Combining the band specific values for Pr with Rr values 
derived earlier (figures 3.7 and 3.8) we can use equation (3.19) to create the graphs in 
figures 3.49 and 3.50.  Note that L is the overall length of the top-wire in feet in all of 
the graphs in this section.  L=0 represents the no top-loading condition. 

Vo is the voltage at the feedpoint: 

𝐕𝐕𝟏𝟏 = 𝐗𝐗𝐗𝐗𝐈𝐈𝟏𝟏 = 𝐗𝐗𝐗𝐗�𝐏𝐏𝐫𝐫
𝐑𝐑𝐫𝐫

     (3.20) 

We can use typical Xi values from figures 3.4 and 3.5 to generate values for Vo as 
shown in figures 3.51 and 3.52.  Note that the y-axis is logarithmic, emphasizing the 
rapid change in Vo with top-loading.   

These graphs illustrate one important point:  

Even a small amount of top-loading significantly reduces Io and 
greatly reduces Vo! 

Despite the low radiated powers (Pr) Vo can easily approach 1kV on 630m and be 
even higher on 2200m.  This must be kept in mind when selecting a base insulator.  It's 
clear that substantial height (H) and top-loading are required on 2200m if Vo is to be 
kept below 10 kV.  Given that we are trying to radiate only 330 mW that may come as 
a shock!     
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Figure 3.49 - Io for Pr=1.67W at 475 kHz. 
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Figure 3.50 - Io for Pr=0.33W at 137 kHz. 
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Figure 3.51 - Vo for Pr=1.67W at 475 kHz. 



51 
 

 

Figure 3.52 - Vo for Pr=0.33W at 137 kHz. 
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The input power to the antenna will include Pr, the radiated power, PL, the power 
dissipated in the loading inductor, Pg, the power lost the soil, plus conductor and 
leakage current losses.  All of these loses are reduced substantially when Io and Vo 
are reduced.  Pc was discussed in section 3.11, Pg is addressed in chapter 5 and PL is 
discussed in chapter 6.  In general PL and Pg are the dominant losses, usually very 
much greater than Pr. 

Summary 

This chapter has shown many examples of top-loading arrangements, some simple, 
some more complex but all of them effective.  The clear message throughout has been 
the great improvement in efficiency which capacitive top-loading can provide over a 
simple unloaded vertical.  All the variations and discussion boil down to three practical 
points: 

.... get as much wire as possible as high in the air as possible..... 

...symmetry is not needed... 

...even a small amount of top-loading is vastly better than none... 
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Chapter 4 

Inductive Loading 
4.0 Introduction 

This chapter explores the use of inductive loading to increase the radiation resistance 
(Rr) and to enable excitation of a grounded tower.  Chapter 3 demonstrated the utility 
of capacitive top-loading where the increase in Rr was primarily due to beneficial 
changes in the current distribution on the vertical.  However, top-loading is not the only 
means for increasing Rr.  We can move the tuning inductor or even only a portion of it, 
from the base up into the vertical.  We can also move the feedpoint higher in the 
vertical.  Multiple inductors can be useful in what referred to as "multiple-tuning", a 
technique using multiple inductors in multiple downleads to manipulate the feedpoint 
impedance and distribution of current between parallel wires.  

4.1 Loading inductor location 

 

Figure 4.1 - Current distribution on a 50' vertical at 475 kHz. 
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In HF mobile verticals it has long been standard practice to move the loading inductor 
from the base up into the vertical to increase Rr[1]. We can do the same for LFMF 
verticals.  Figure 4.1 compares the current distribution on a 50' vertical with the tuning 
inductor either at the base or near the midpoint.  With the inductor near the midpoint 
the current below it remains essentially equal to Io.  Increasing the current along the 
lower part of the vertical increases the Ampere-degree area A' (see section 3.3) which 
translates to increased Rr: 0.22Ω → 0.57Ω.   

 

Figure 4.2 -  Efficiency as a function of loading inductor location and value. 

To keep the antenna resonant as the coil is moved up its impedance (XL) must be 
increased, 3411Ω → 6487Ω.  Figures 4.2 and 4.3 show efficiency as the coil is moved 
higher.  In this graph the horizontal axis represents the position of the loading inductor 
in percent of total height (H).  The vertical axis is the efficiency in decimal form as a 
function of inductor placement.  Traditionally the entire loading inductance  is moved 
up.  However, there are advantages to moving only a portion of the loading inductance 
up into the antenna and retaining the remainder (Lbase) at the base.  In figures 4.2 and 
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4.3 the Lbase=0 contour represents the case where all of the inductance is moved up 
but there are also contours representing cases where Lbase remains substantial, from 
500Ω to 2000Ω.  Assuming the same QL for both inductors (QL=400) there can be 
some improvement in efficiency with divided loading (≈2%). 

 

Figure 4.3 - Efficiency in dB. 

Figure 4.3 converts the decimal efficiencies given in figure 4.2 to dB of signal 
improvement.  Zero dB corresponds the case where all of the loading inductance is 
located at the base.  For a given QL, RL will increase as the inductor is moved up.  
Despite this increase in RL moving the inductor up generally improves efficiency.  The 
peak efficiency occurs for heights of 40 to 50% of H.  How much does this increase our 
signal?  For Lbase=0, i.e. we move all the inductance up, we can get about 0.74 dB of 
improvement at a height of ≈35%.  By making Lbase=1500Ω we can pick up another 
0.25 dB for a total improvement of almost 1 dB which is probably worth doing. 
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There is a simple trick for converting XL in ohms to L in μH: XL=2πfL, at 475 kHz 
2πfMHz≈3 and at 137 kHz 2πfMHz≈0.86.   For example at 475 kHz XL=6487Ω 
corresponds to 6487/3≈2,200μH or 2.2mH. 

 

Figure 4.4 - Impedance matching with the base inductor  

Even if a modest increase in signal is not compelling there are other reasons for using 
two inductors.  Even when resonated it will still be necessary to match the feedpoint 
impedance to the feedline which can be done very simply by tapping the base 
inductance as shown in figure 4.4A.   

A base inductor is also a convenient point to retune the antenna when necessary.  
Over the course of the seasons as the soil characteristics change, the tuning often 
shifts, primarily due to variations in effective loading capacitance as the soil 
conductivity changes with moisture content. Small heavily loaded verticals typically 
have very narrow bandwidths.  In most cases some arrangement for adjusting the 
inductance will be needed.  This can be readily done by using a variometer (figure 
4.4B) (see chapter 6 for more details) or a separate small roller inductor in series.  One 
additional advantage of not putting all the inductance up high is the reduced weight of 
the elevated inductor.   
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It is possible to use a long inductor for some or even all of the vertical.  This 
is occasionally seen in mobile whips.  EZNEC Pro v6 can model antennas 
constructed with a long helix.  Figure 4.5 gives an example of a 50' vertical 
with a helix (coil) 24' long, 2' in diameter, with150 turns of #12 copper wire.  
The bottom of the coil is at 2' and the top of the coil at 26'.  EZNEC gives an 
efficiency of ≈4.1% which is somewhat better than a single concentrated 
load at 0.35H (figure 4.2, QL=400).      

Figure 4.5 - A 475 kHz vertical with distributed loading inductor.→ 

4.2 Inductor location with top-loading 

Due to windage considerations mobile verticals seldom have much 
capacitive top-loading but fixed station antennas have (or should have!) as 
much top-loading as practical.  

 

 

Figure 4.6 - Efficiency as a function of loading coil position. 
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Figure 4.7 - Efficiency versus loading coil position with heavy top-loading. 

Moving the inductor higher into a heavily top-loaded vertical has less effect on the 
current distribution.  As a result efficiency improvements are much smaller.  Figure 4.6 
gives an example of a T antenna with H= 50' and a single 100' top-wire.  As the 
inductor is moved up there is some improvement in the signal but not a lot, only 0.4 dB 
even when two inductors are used.   

As shown in figure 4.7, when we have a much larger top-hat (three wires 100' long by 
20' wide) the improvement from elevating the inductor is even smaller, <0.15 dB  This 
small an improvement is not worth the hassle of mounting an inductor high in the 
antenna!  The reason for the very small improvement can be seen in figure 4.8 which 
shows the current distribution for various loading inductor heights.  Even without 
moving the inductor up, It/Io is almost 0.85 (It=current at the top of the vertical section).  
Moving the inductor up increases A' but not by very much.   
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Figure 4.8 - Current distributions on a top-loaded vertical for various loading inductor 
heights at 475 kHz. 

In heavily top-loaded verticals there appears to be little improvement in efficiency from 
elevating the loading inductor.  On the other hand if the top-loading is less, It/Io ratio 
<0.4-0.5, and more top-loading is not practical then moving the coil up may help.  This 
has to be evaluated on a case-by-case basis using modeling.  

4.3 Grounded Tower Verticals 

A grounded tower with attached HF antennas and associated cabling is sometimes 
available.  For an LF-MF antenna the tower may be simply a support but it can also be 
a  radiator.  One way we might do this is shown in figure 4.9 where the loading inductor 
and the feedpoint have been moved to the top of the tower.  The top-loading wires are 
insulated from the tower and connected to one end of the loading inductor.  The other 
end of the inductor is connected to the top of the tower.  A coaxial feedline runs up the 
tower with the shield connected to the top of the tower.  The coax center conductor is 
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connected to a tap on the loading inductor to provide a match.  Although not shown, it 
is possible to have a mast with HF Yagis extending above the top of the tower which 
will add  some additional capacitive loading. The downside of this scheme is that all the 
adjustments must be made at the top of the tower.   

 

Figure 4.9 -  Grounded tower, feedpoint and loading inductor at the top. 

A common alternative for exciting a grounded tower often used on 80m and 160m is 
the shunt-fed tower shown in figure 4.10.  Unfortunately this scheme works only if 
H>0.7 λ/4 at the operating frequency.  At 475 kHz that would mean H>350', much taller 
than most amateur towers.  The causes and cures for problems associated with this 
configuration are worth discussing in some detail because similar problems can arise 
whenever multiple downleads are used, which is quite common in LF-MF antennas.  
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Figure 4.10 - Shunt fed tower. 

 

 

 

 

 

Figure 4.11 - Monopole antenna.  From 
Raines[6]

The arrangement illustrated in figure 4.10 is usually considered to be an impedance 
matching scheme but the tower and the shunt wire is actually a member of a family of 
antennas called "folded monopoles", as shown in figure 4.11.  One of the important 
properties of folded monopoles is that the feedpoint impedance can be a multiple of 
that for a single element vertical of the same height.  For example, if two elements are 
used and both elements have the same diameter, the Zi will be 4X that for a single 
element.  Even more elements can be added to further increase Ri.  It is also possible 
to use elements of different diameters which can lead to arbitrary Ri ratios.  All of this 
however, applies only when the height is close to λ/4.  When we shorten the antenna 
to heights practical on 475 or 137 kHz the antenna behavior is quite different. 
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Figure 4.12 - Ri versus height for normal and folded monopoles. 

Figure 4.12 compares the values of feedpoint Ri between a normal monopole (dashed 
line) and a folded monopole (solid line) at 475 kHz for a wide range of heights. Ri for 
the normal monopole has been multiplied by 4X for this comparison.  A similar graph 
for Xi is given in figure 4.13.  In both graphs we can see that for heights down to ≈400' 
Zi ≈ 4X as predicted but as we go to shorter heights there is a rapid divergence 
between the behavior of the two antennas.  Our interest is primarily H<100' where the 
folded monopole impedance is very small compared to the normal monopole. 

What's going on and can we fix it?   
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figure 4.13 - Xi versus height for normal and folded monopoles. 

A folded monopole can be viewed as a superposition of a vertical and a transmission 
line shorted at the far end as shown in 4.14[5, 6, 7, 8].  There are two currents, a radiating 
"antenna current"  =2X(Ia/2) and a circulating "transmission line current" =IT.  A lumped 
element equivalent circuit is shown where Ra+jXa represents the vertical and +jXT 
represents the inductance appearing across the feedpoint due to the transmission line.  
The value for jXT can be found from: 

jXT=jZo Tan(H) 

Where Zo is the characteristic impedance of the transmission line which depends on 
element spacing and diameters.  H is the length in degrees or radians. 

For the "monopole" Xc rises quickly as H is reduced (chapter 2) but the "transmission 
line" XT falls rapidly as H is reduced.  The result is shown in figure 4.13, at H≈310', 
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Xa=XT and we have a parallel resonance with very high input impedance.  It can also 
be shown that at this point there are very large circulating currents leading to large 
losses. 

 

Figure 4.14 - Folded monopole vertical equivalent circuit. 

Below the parallel resonant point the amplitude for XT becomes much smaller that Xa 
and the antenna is basically just a tall narrow loop inductor with very little radiation! 

Now we might ask if some top-loading would help?  Figure 4.15 shows what happens 
when substantial top-loading is added (two parallel wires 200' long) .  Certainly there is 
some improvement but the basic problem is still there, XT still dominates Zi and there is 
a large circulating current in the "transmission line" 
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Figure 4.15 - Ri versus height for normal and top-loaded folded monopoles. 

  Figure 4.16 shows we might eliminate the effect of XT by adding series inductance 
(XL).  There are a couple of points at which we might add inductance: at the grounded 
end of element 1 or at the top of the antenna or both.  Since our concern here is with a 
grounded tower we will place an inductor at the top of the antenna.  Other possibilities 
are discussed in the section on multiple tuning.  If XL>> XT then the transmission line 
impedance is in effect constant and has a value of our choosing.  Normally we would 
choose XL to resonate the antenna which means it's value will be large compared to XT 
for typical amateur antenna heights.  Figure 4.17 shows an application of this idea with 
part of the loading inductor at the top and the rest at ground level to make adjustment 
and matching convenient.     Even though we've overcome a problem with short folded 
monopoles, we still have a very short vertical so in addition to the inductive loading we 
still need capacitive top-loading as shown to minimize the inductance.  The top-hat 
wires are insulated from the tower as they were in figure 4.9. 
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figure 4.16 - Alternate impedance placement. From Raines[tbd] & Harrison & King[5]. 

 

Figure 4.17 - Grounded tower feed scheme using two inductors. 
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4.4 Multiple Tuning 

As suggested in figure 4.18, we can have multiple vertical elements, 1,2,...,m, n,... with 
inductors in series with each downlead/vertical. 

 

Figure 4.18 - Adding tuning inductors to a short folded monopole.  From Raines[6] 

Commercial LF antennas have long used multiple inductors to advantage.  An example 
taken from Laport[2] is shown in figure 4.19. 

 

Figure 4.19 - Example of multiple tuning. 

The following is a quotation from Laport: 

"The most extreme conditions of low radiation resistance and high 
reactance are encountered at the lowest frequencies, and some extreme 
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measures are necessary to obtain acceptable radiation efficiencies.  ....... 
The most successful method of improving the radiation efficiency is that of 
multiple tuning. The antenna consists of a large elevated capacitance area 
with two or more down leads that are tuned individually as indicated in 
the figure.  The total antenna current is thus divided equally among the 
down leads, each of which has its own ground system.  The down lead 
currents are in phase, and because of their electrically small separation 
there is no observable effect on the radiation pattern, which is always 
nearly circular.  Power is fed into the system through one of the down 
leads. 

When arranged for multiple tuning, an antenna behaves as a number of 
smaller antennas in parallel, voltage being fed through the flat-top system.  
Thus, a system with triple tuning is essentially three antennas in parallel, 
one of which is fed directly by coupling to the transmitter and the other 
two at high potential (voltage feed) through their common flat-top. From a 
radiation standpoint, the same effect would be realized if the different 
portions of the antenna were not physically connected through their 
common flat-top but instead were separately fed from a common 
transmitter and feeder system in the manner of a directive antenna.  
Practically it is simpler to take advantage of the fact that almost all 
antennas for the lowest radio frequencies must of necessity employ flat-tops 
for capacitive loading and merely to add the extra down leads for multiple 
tuning.  In that way, there is only one feed point, and the problems of 
power division, phasing, and impedance matching are automatically 
minimized. ..... 

If N represents the number of multiple tuning down leads carrying equal 
currents, the new radiation resistance Rrr is related to that for single 
tuning by the equation 

Rrr=RrN2.   ...." 

In a short LF-MF antenna this scheme can provide feedpoint impedances which are 
much easier to deal with.  Laport goes on to suggest that, for equal QL in all inductors, 
the total inductor loss will be reduced with multiple tuning but this does not appear to 
be correct.  Modeling shows that the losses are essentially the same.  However, 
ground system losses with multiple grounds may be less.   
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As shown in chapter 2 (equation 2.8), a vertical can be viewed as a single wire 
transmission line with an average characteristic impedance[3] Za.  The top-loading can 
be viewed as a voltage source which allows us to model the antenna as a transmission 
line with a voltage source at the top and a short-circuit termination at the bottom as 
shown in figure 4.20A. 

 

Figure 4.20 - Parallel down-lead equivalent circuit. 

The input impedance of a S/C transmission line fed at the top is: 

Zi=jZa Tan(H) 
Figure 4.21 is a graph of Zi at 475 kHz as a function of H for #12 wire and 2" diameter 
tubing.    H=500' is close to λ/4 resonance.  From the graph we can see that Zi drops 
rapidly as the vertical is shortened below λ/4.  At H=500', Zi≈10kΩ but at 100', Zi≈100Ω 
with Zi falling rapidly below H=100'.  Given most amateur antennas will have H<100', Zi 
will be much smaller than the value of XL needed for resonance so that the impedance 
of the vertical(s) when excited at the top is almost entirely determined by the loading 
inductance.  The multiple downleads shown in figure 4.19 are equivalent to multiple 
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transmission lines in parallel as shown in figure 4.20B.  To control the current 
distribution between the multiple downleads we insert inductors.  The currents may all 
be the same as or different.  Non-equal current distributions can be used to modify the 
feedpoint impedance, i.e. if you insert more inductance in the driven downlead, the 
current that downlead will be reduced and the feedpoint impedance increased.  You 
will have to readjust the  other inductances to re-resonate the antenna however! 

 

Figure 4.21 - Zi at 475 kHz versus height. 

One other important point, Terman[4, page 841] has a comment on minimum top-hat 
capacitance which applies to multiple tuning: 

"...the flat-top capacitance should be considerably greater than the 
capacity of the vertical downlead....."   

There has to be enough capacitance so that the impedance of the "voltage source" (i.e. 
the top-loading) is low compared to Zi.   
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4.5 Multiple tuning examples 

As a reference point we can start with the T antenna shown in figure 4.22. 

 

Figure 4.22 - T-antenna example. 

 

Figure 4.23 - Antenna with two downleads and a loading inductor at the base of each 
downlead. 
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The antenna and the radials are #12 copper wire.  H=50' and each top-wire is 50' long.  
There are sixty four 45' radials buried 6" in average soil (0.005/13).  For resonance at 
475 kHz, XL=1239Ω (≈410μH).  Including copper (Rc), RL and soil losses (Rg), the 
feedpoint resistance Ri is ≈6.21Ω and the radiation efficiency is ≈10.0% or -10dB.  
Suppose we use the same top-wire (100') but introduce multiple tuning with two 
downleads, one at each end as shown in figure 4.23. 

For each downlead H=50' and the top-wire is 2x50'=100'.  The same total amount of 
wire is used in the new ground system, i.e. each downlead has thirty two 45' radials.  
For resonance at 475 kHz, XL1=XL2= 1857Ω (≈620 uH).  Ri≈16.3Ω and the efficiency 
is about 11.9% or -9.24 dB which represents a signal improvement of +0.76 dB.  As 
predicted going from one to two downleads the current in each downlead is Io/2 and Ri 
is increased by a factor of four.  There is some improvement in efficiency, ≈2%.  It 
should also be noted that the antenna in figure 4.23 forms a half-loop.  In regions 
subject to ice storms it is possible to inject a line frequency current at the base of the 
driven element and add a ground wire between the bases to complete an AC heater 
circuit. 

 

Figure 4.24 - Increased top-loading. 
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We could have used more top-loading (figure 4.24) to increase efficiency.  This 
increases the efficiency to 15.1% or +1.8 dB which is almost 1 dB better than the 
multiple tuning example in figure 4.23.  Of course we could also combine multiple 
tuning with the increased top-loading as shown in figure 4.25.  The efficiency is now 
18.6% or -7.3 dB.  In this example multiple tuning increases the signal by another dB.  
Multiple tuning can increase efficiency but usually only modestly. 

 

Figure 4.25 - Multiple tuning applied to figure 4.24. 
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4.6 Loop antennas 

Ground systems are a nuisance and sometimes impractical.  We might consider using 
a transmitting loop like that shown in figure 4.26.   

 

Figure 4.26 - Loop antenna. 

In this example the horizontal wires are 100' long and the vertical wires 50', all #12 
copper wire.  The bottom wire is 8' above average ground (0.005/13) and f=475 kHz.  
The antenna is resonated with a capacitive load at the center of the upper wire (3) 
where Xc=537Ω.  As is typical for small loops the current amplitude around the loop 
varies only +/- 5% with very little phase difference and for the values given, the 
radiation efficiency will be ≈1.8%.  John Andrews, W1TAG, WE2XGR/3, has used a 
similar loop made with RG8 coax (diameter≈0.3").  This increases the efficiency to 
≈3.1%.  Not great but if 100W of input power is available then the maximum EIRP can 
be reached.  Even if we used super-conducting wire the efficiency would still be limited 
to ≈4.2% due to near-field ground losses, a factor often overlooked in transmitting 
loops.  Poorer soil would mean even lower efficiency.  These efficiencies are not very 
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encouraging but then transmitting loop antennas are not known for their efficiency!  
This antenna has a directive pattern with a mix of vertical and horizontal radiation 
shown in figure 4.27. 

 

Figure 4.27 - V and H radiation pattern at 23° elevation. 

This discussion raises the question "can we use inductors to improve transmitting loop 
efficiency?"  Suppose we take the antenna in figure 4.23 and elevate it 8' above 
ground and replace the ground system with a single wire as shown in figure 4.28.  The 
loads are equal, XL1=XL2= 4443Ω for resonance at 475 kHz.  The antenna has the 
same dimensions and construction as the loop in figure 4.26.  However, the current 
pattern is very different!  The currents in horizontal wires are out of phase, with a null at 
the center of the horizontal wires.  The currents in the downleads are now in-phase. 
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Figure 4.28 - Loop currents with multiple tuning inductors. 

 

Figure 4.29 - Directional pattern with multiple tuning. 
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This results in a very different radiation pattern as shown in figure 4.29.  The radiation 
is almost all vertically polarized and uniform in all directions.  The efficiency including 
conductor and soil losses has been increased from 1.8% to 8.9%, almost 5X!   

It is important to recognize that by adding two inductors to a 
small transmitting loop (0.14λ circumference) we have 
transformed the current distribution making it a very 
different antenna!  

 

Figure 4.30 - Adding top and bottom capacitive loading. 

Returning to figure 4.28, 8.9% is a significant improvement over the conventional loop 
but still no great shakes.  In the case of the simple loop, conductor loss is important but 
in the multi-tuned loop the losses are dominated by loading inductor RL.  We know 
how to reduce RL: add capacitive loading!  Figure 4.30 gives an example.  The 
efficiency of this configuration is ≈12.8%, far higher than the simple loop.  It's still not 
as good as antennas with ground systems (figures 4.24 and 4.25) but then there is no 
ground system.  A fair trade perhaps? 
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4.7 Effect of feedpoint location 

Although it's very convenient to feed a vertical directly at the base we don't have to.  In 
short LF/MF verticals we can modify the current distribution by placing the feedpoint 
some distance up the vertical. 

In a full size λ/4 vertical we can ground the base and place the source at any point 
along the conductor.  You could for example insert an insulator at some elevated point 
with the coaxial feedline inside the vertical up to the insulator with the shield connected 
to the lower section of the antenna at that point and the center conductor connected to 
the upper section.  The base of the vertical is grounded.  When you do this the antenna 
is still resonant but, depending on the placement of the insulator, the feedpoint 
impedance can now be 50Ω or whatever you wish.  This is a common trick at HF to 
improve the SWR without a matching network.  However:   

When you do this in a λ/4 vertical there is no detectable change in the current 
distribution along the vertical, i.e. A' is not changed.   

 

Figure 4.31 - Effect on current distribution of different feedpoint locations. 
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When you play this same game with a short vertical, say H=50' at 475 kHz, the current 
distribution and A' changes greatly!  As shown in figure 4.31, the current below the 
feedpoint is nearly constant.  Elevating the feedpoint increases A' which implies an 
increase in Rr.  While the increase in Rr from moving the tuning inductor up into the 
antenna has long been known I've never see the effect of moving the source 
discussed.  

This effect is interesting but it does not appear to be particularly useful for LF/MF 
transmitting antennas because there will be a large tuning reactance which can be 
moved to increase Rr.  If we try to leave the tuning inductor at the base and only 
elevate the feedpoint then we have the problem of decoupling the feedline at the base.  
If the base inductor is wound with coaxial line then the base inductor can provide the 
decoupling but that complicates the tuning inductor.  However, this scheme does allow 
us to obtain higher Rr without having to elevate the loading inductor. 

While not particularly useful for transmitting verticals an elevated feedpoint can be very 
useful when short verticals (e-probes) are used as elements in a receiving array.  
These verticals are normally not resonated with loading inductors but simply connected 
to the inputs of high impedance amplifiers.  Moving the feedpoint up into the e-probe 
increases A' which increases the effective height (h) which increases the terminal 
voltage for a given E-field intensity.  It should also be kept in mind that adding top-
loading to an e-probe will also increase the effective height. 

Summary 

This chapter has shown several variations for the placement and number of loading 
inductors.  Once the antenna height and top-loading have been maximized the 
following points were made:  

...loading inductor arrangements can significantly improve the 
efficiency... 

...and make it possible to excite a grounded tower to act as 
radiating part of the antenna...   

...for a receiving e-probe vertical, moving the feedpoint up into 
the vertical can increase the received signal.... 
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Chapter 5 

LFMF Ground Systems 
5.0 Why do we need a ground system? 

The discussion of efficiency in earlier chapters has focused on loss introduced by the 
tuning inductor which is reasonable given that RL often represents a major loss in short 
antennas.  While much can done to reduce Xi and increase Rr, there are practical 
limits and at some point we have to start thinking about reducing other losses.  A 
substantial portion of the power supplied to the antenna may be absorbed in the soil 
near the base.  To reduce this loss a ground system is used.   

This chapter begins with some basic definitions and then moves on to examples and  
practical questions like: 

• what type of ground system?  
• how many radials?  
• radial lengths? 
• what performance can we expect? 
• optimum use of a fixed amount of wire? 

A range of examples have been chosen to provide general guidance but none should 
be taken as exact numerical descriptions for all cases.  You will have to do some 
measurements, modeling and/or calculations to arrive at the best solution for your 
unique situation. 

 5.1 Choices for ground systems 

Ground systems can take several forms: 

1. A radial wire fan lying on the ground surface or buried a few inches. 
2. A rectangular grid of wires 
3. Single or multiple ground rods. 
4. Elevated wires in the form of a counterpoise or "capacitive" ground. 
5. Combinations of the above.  Limited only by imagination! 

The choice of ground system will be dictated by the operating wavelength, available 
space, soil mechanical characteristics (i.e. sandy loam or tree stumps and boulders), 
available resources, etc.  Because of the much longer wavelengths at LFMF and 
significant differences in soil electrical characteristics between LFMF and HF (shown in 
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chapter 1), the ground systems may be significantly different from what we are 
accustomed to at HF.   

Most of information given here is derived from NEC modeling simply because it's far 
easier to generate that way but in the end we have to have experimental verification.  
References [1] through [15] provide this and in general the correlation is excellent.  As 
a practical matter the accuracy of NEC modeling is limited by how well the actual soil 
electrical characteristics are known.  References [9, 15] show how to measure these 
characteristics but we must keep in mind that soil characteristics vary widely with 
moisture content with changes of season.  We have to assume the worst case when 
modeling.  At HF seasonal variation is usually not noticeable especially if there is an 
extensive ground system.  But with the short, heavily top-loaded verticals and limited 
ground systems typical on 2200m and 630m, the seasonal change in soil conductivity 
can significantly detune the antenna.  This is mostly a capacitive loading effect as the 
soil conductivity increases or decreases. 

Since the mid 1930's the generally accepted "ideal" for a ground system has been the 
broadcast (BC) system using 120 0.4λ radials, typically #8 Copperweld buried 12-18".  
This system originated with the work of Brown, Lewis and Epstein[16] and other work by 
Brown[17-21] published in the 1930's.  The value of this work was immediately 
recognized and a standard design was adopted by the BC industry and sanctified with 
FCC regulations.  While this was certainly seminal work of great value, it's adoption as 
a standard had the effect of making ground system design appear to be a "perfected 
art" and attention shifted to other problems!  At 630m and especially at 2200m the 
"standard" ground system is not even remotely practical for amateurs!  We have to be 
more inventive and accept compromise. 

For this discussion the ground system radii have been limited to ≤150' but even that is 
a bit large, so many examples have smaller ground systems.  

5.3 Feedpoint equivalent circuit 

Figure 5.1 is an equivalent circuit representing the resistive part of an antenna's 
feedpoint impedance (Ri).  Rr is the radiation resistance representing the radiated 
power (Pr) and Io is the current at the feedpoint.  Rg accounts for the power dissipated 
in the soil (Pg) and RL represents the tuning inductor loss.  RL is a physical resistor 
arising from the series resistance (RL=XL/QL) of the inductor, but Rr and Rg are not 
lumped physical resistors.  Rc represents conductor loss and Rmisc other losses.   



3 
 

 

Figure 5.1 - Equivalent circuit for the resistive part of the feedpoint impedance.  

In earlier chapters we've seen how dependent Rr is on specific details of the antenna: 
i.e. dimensions and loading.  Earlier examples determined Rr with perfect ground but 
Rr can also be a function of soil electrical characteristics and ground system design.  
This effect is prominent at HF though significantly less at LFMF[22].   

Rg depends on frequency, soil electrical characteristics, details of the ground system 
and the antenna associated with the ground system.  If we modify the antenna, even 
without changing the ground system or soil, Rg will change.  The reason for the 
change in Rg is that the soil loss depends on the EM field intensities close to the 
antenna.  The field intensity changes when the antenna is altered which in turn 
changes soil loss and Rg.  For example, the field intensities are directly proportional to 
Io, when we add top-loading Rr increases which means we must reduce Io to stay 
within the Pr limits.  Reduced Io results in less power dissipation in the soil and an 
altered value for Rg. 
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5.4 Definitions for Pr, Pg, Rr and Rg 

Figure 5.2 illustrates "Pr" and "Pg".  The dashed line represents a virtual hemispheric 
surface, with radius r, enclosing the antenna.  Pr is defined as the total power radiated 
through the surface of the hemisphere.  Pg is defined as the power passing through 
the bottom into the soil, which is the ground surface, and dissipated in the soil.  r=λ/2 is 
usually chosen because it is approximately the outer boundary of the reactive near-
field for verticals with a height of λ/8-λ/4.  For shorter antennas r can be somewhat 
smaller[22].     

 

Figure 5.2 - Pr and Pg. 

Rr and Rg are defined in terms of Pr and Pg: 

𝐑𝐑𝐑𝐑 ≡ 𝐏𝐏𝐑𝐑
𝐈𝐈𝐨𝐨𝟐𝟐    Ω (5.1)       𝐑𝐑𝐑𝐑 ≡ 𝐏𝐏𝐑𝐑

𝐈𝐈𝐨𝐨𝟐𝟐    Ω (5.2) 

5.5 Efficiency with ground losses 

In the following discussion Ri at the feedpoint is assumed to be the sum of Rr + Rg + 
RL.  Conductor and other losses will be omitted, not because these are unimportant, 
but the interest here is in RL/Rr and Rg/Rr.  We can state efficiency 𝛈𝛈 In terms of Rr, 
RL and Rg: 

𝛈𝛈 = 𝟏𝟏

𝟏𝟏+𝐑𝐑𝐋𝐋𝐑𝐑𝐑𝐑
+
𝐑𝐑𝐑𝐑
𝐑𝐑𝐑𝐑

    (5.3) 
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5.6 Simple advice 

The instructions for an adequate ground system can be boiled down to: 

1) Use at least 50 radials.  Note, we are not talking about 0.25λ radials! Most 
backyards will only have room for 30-40' radials.  Where possible the radials should be 
somewhat longer than the height of the vertical 

2) In the case of a very large top-hat, the radials should extend out to 1.25X the top-hat 
radius if possible. 

3) When a large number of radials are used the wire size is not important.  The wire 
needs to be strong enough to be installed and survive in its environment.  

4) Almost any metal can be used for the radials but the usual choice is insulated 
copper house wiring because it  is usually cheaper than the same wire bare.  For an 
elevated system #17 aluminum electric fence wire can be used.  However, lying on the 
surface or buried, aluminum wire may degrade quickly  

5) If the radials are lying on the surface, use lots of staples to keep them close to the 
ground so mowing or other traffic will not damage them. 

6) Use at least one ground stake at the base for safety. 

5.7 Ground system for an unloaded vertical 

Figure 5.3  shows a typical buried radial wire ground system. 

 

Figure 5.3 -Vertical with a buried wire radial ground system 
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Typical urban lots have a width of 50-60' and a depth of roughly 100-120'.  Usually 
most of the lot will be occupied by the house and front yard setbacks so in the end at 
most a 50'X50' area is available for the ground system.    For those lucky enough to 
have more property longer radials can be used so for the following discussion radial 
lengths from 25' to 150' will be used.  Unless noted otherwise average soil (0.005/13) is 
assumed along with bare #12 radial wire buried 12".  Insulation on the wires and larger 
or smaller wire sizes generally have only small effects.  Radial wires can also be lying 
on the ground surface with similar effectiveness.   

Figure 5.4 is an example of how efficiency varies as a function of radial length for a 
given number of radials (32 in this case).  For H=20' the maximum usable radial length 
is about 30'.  Making the radials longer has very little effect.  The reason is that in a 
vertical this short Xi is very large which means a large loading inductor (XL=Xi) and 
consequently large RL.  For this short a vertical RL is large compared to Rr and it's 
also becomes large compared to Rg as radial length approaches 30', i.e. Rg falls as 
the radial lengths are increased so that it becomes small compared to RL.   

 

Figure 5.4 - Efficiency as a function of H and radial length. 
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As we increase H the efficiency rises quickly because RL is reduced and the maximum 
usable radial length expands to 50' or more.  There is a further increase in efficiency 
and usable radial length when we let H=80' but even with that height the efficiency is 
not very good.  As shown in chapter 3 even a small amount of capacitive top-loading 
can greatly reduce Xi and improve efficiency.  In addition, because the loading 
inductance will be much larger on 2200m, the dominance of the RL will be even more 
pronounced.  For those reasons the use of at least some top-loading will be assumed 
in the following discussion.  

5.8 Ground systems for urban lots 

In this and following sections T antennas with H=20', 50' or 80' and a top-wire length 
=100' will be used to illustrate the interplay between efficiency, radial length, radial 
number, QL and H.  It should be kept in mind that although the following examples use 
a single top-wire for loading, any loading structure which gives similar value for Xt will 
produce the same result.  As emphasized in chapter 3, it's the amount of loading (Xt) 
not the shape that matters.  This means the conclusions we'll draw from the following 
graphs can apply to different antennas with similar heights. 

 

Figure 5.5 - Small ground system comparison. 
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The simplest ground system would be a single ground stake.  From there we can add 
various numbers of radials of lengths up to 25'.  It is also possible to have a radial 
system with ground stakes at the far ends of the radials.   

Figure 5.5 gives comparisons between three ground systems: a single 8'X5/8" ground 
rod or stake, thirty two 10' radials and thirty two 25' radials.  The solid lines represent 
the efficiency without the tuning inductor loss and the dashed lines represent the 
efficiency when QL=400.  With a the single ground rod the ground loss (Rg) is so large 
that RL doesn't matter very much.  As soon as we add even the small radial system 
(32X10') the efficiency increases by almost an order of magnitude and expanding the 
radial lengths to 25' yields another factor of ≈3X in efficiency.  This is due to reductions 
in Rg with longer radials. 

 

Figure 5.6 - Increasing radial number and adding ground stakes. 

As shown in figure 5.6, increasing the radial number to 64 improves the efficiency but 
not by a lot.  The efficiency tapers off because the Rg/Rr term becomes small 
compared to the RL/Rr term.   Another option when radial lengths are restricted by 
available space is to add ground stakes at the ends as indicated in figure 5.24.  This 
yields more improvement in efficiency than doubling the radial number but represents 
significant cost and labor for which only 1% or so is gained! 
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5.9 Larger ground systems 

Figure 5.7 shows efficiency as a function of radial length with the radial  number as a 
parameter.  The dashed lines are straight-line approximations for the curves which 
allow us to identify the point of vanishing returns, i.e. the point at which increasing the 
radial length begins to provide less improvement.  On some of the graphs this point is 
labeled the "knee".  Many of the graphs to follow will have these dashed lines.  Two 
points to notice, first increasing the radial number is very helpful, in fact we could have 
gone to 128 radials and still have had some useful improvement.  Of course every time 
you double the number of radials you double the amount of wire used!  Second, the 
efficiency improves rapidly up to lengths of 60-70' before leveling out.  By 150' there 
isn't much point in making the radials longer.  Independent of radial number (for this 
example!) the "knee" corresponds to a radial length of ≈65'-70' which is a bit more than 
H (50').  This the reason for comment 1 in section 5.6.  Note that 64 radials are only 
marginally better than 32. 

 

 

Figure 5.7 - Efficiency versus radial length. 
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Figure 5.8 graphs the same data in a different way, efficiency as a function of radial 
number for different radial lengths.  Independent of radial length, the knee is about 30 
radials.  Above the knee it's better to use longer radials rather than more numerous 
radials!  This behavior is quite different from what is normally seen in HF verticals.  At 
HF the radial lengths are typically 0.125λ or longer but at 475 kHz 50' is only 0.024λ 
and the E and H fields are quite different as shown in appendix TBD.  Ground system 
optimization is somewhat different at LFMF.   

 

Figure 5.8 -efficiency versus radial number for different radial lengths.  

One frequently asked question is, "If I have a limited amount of wire available for 
radials how should I divide it up?"  In other words, "should I use a few long radials or 
many short radials?" We can re-plot the data in figure 5.8 to answer that question as 
shown in figure 5.9.  Here we see that for H=20', 32X50' radials would be the best use 
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of the wire.  At H=50' or 80' either 16X100' or 32X50' radials would work pretty much 
the same.  Given that 50' radials take up 1/4 the area of the 100' radials, 32X50' radials 
would seem to be a good choice in those cases also.  It is interesting to note 32 radials 
is close to the knee value for the radials in figure 5.8, although this should not come as 
a great surprise since all three of these graphs are using the same data graphed in 
different ways. 

 

Figure 5.9 - Efficiency versus radial length for various heights.  
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Figure 5.10 -Efficiency versus radial length versus QL.  

Up to this point QL has been assumed to be 400.  At 475 kHz that's practical with 
some modest effort.  However, as shown in chapter 6, much higher QL is possible but 
requires careful inductor design and construction.  Figure 5.10 illustrates what happens 
to the efficiency when QL is lower, as it easily could be.  This graph shows how critical 
QL is for efficiency.  For radial lengths < 70' both QL and radial length play a role but 
as we make the radials longer the accompanying reduction in Rg/Rr gets smaller and 
RL dominates.  This again reminds us that if we really want higher efficiency we need 
to increase height and/or Xt.  With more top-loading, RL is smaller and longer radials 
can be used to advantage. 

Figures 5.11 through 5.13 are another way to show the relationship between H, radial 
length and radial number. 
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Figure 5.11-Efficiency versus radial length, 16 radials.  

 

Figure 5.12 - Efficiency versus radial length, 32 radials.   
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Figure 5.13 - Efficiency versus radial length, 64 radials.   

The earlier suggestion that radial length is related to height has long been part of 
amateur antenna lore.  The idea is that with a 1/4-wave antenna you use 1/-4wave 
radials and with an 1/8-wave vertical 1/8-wave radials, etc.  To explore this idea I 
modeled 1/4-wave and 1/8-wave verticals at 1.8 MHz over average soil (0.005 S/m, 
Er=13).  The radial lengths were stepped in the sequence 1/8, 1/4, 3/8, 1/2-
wavelength.  The number of radials was stepped in the sequence 4, 8, 16, 32, 64 and 
128.  At each point I recorded the average gain (Ga) and used this as a measure of 
relative efficiency between different radial configurations.  The radials were buried 3" 
below the ground surface. 

The results are shown in figures 5.14 and 5.15.  Note that the vertical axis is 
"improvement" in dB when going from four 1/8-wave radials to more and/or longer 
radials.  The gain for four 1/8-wave radials was used as the reference and set to 0 dB.  
This nicely illustrates what you might "gain" by adding more wire, in different ways, to 
the radial fan.  
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Figure 5.14, Signal improvement for various radial configurations: 1/8-wave vertical.  

Note that the solid lines represent constant radial numbers of different lengths.  The 
dashed lines connect points of common total radial wire length: 1, 2, 4, 8 and 16 
wavelengths.  For example, 4 radials 1/2-wave long represent a wire total of 2-
wavelengths.  Eight 1/4-wave and sixteen 1/8-wave radials also total 2-wavelengths, 
etc.   16 wavelengths at 1.8 MHz is almost 9,000' of wire, which is a substantial ground 
system (64 1/4-wave radials). 

These graphs show that how you add wire to the radial system matters as well as how 
much wire you add.  As we can see from the graphs when only a few radials are used 
(4 to 8 radials), making them longer is waste.  In fact[2] you can actually lose in the case 
of ground surface radials.  This is by no means a first look into optimum radial lengths, 
Stanley[23], Sommer[24] and Christman[25] have all written on this subject. 
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Figure 15, signal improvement for various radial combinations: 1/4-wave vertical. 

Referring to figure 5.14 (the 1/8-wave vertical), if your total wire length is limited to four 
wavelengths, the gain improvement goes from 2 dB with 8 radials to 3.3 dB with 16 
radials and 3.9 dB with 32 radials.  Obviously you're much better off to using thirty two 
1/8-wave radials as apposed to a smaller number of longer radials.  When you 
increase the wire length to 8 wavelengths then it's a wash whether you use either thirty 
two 1/4-wave or sixty four 1/8-wave radials.  The choice becomes one of convenience 
in laying out the radial field.  If you don't have room for the 1/4-wave radials then the 
larger number of 1/8-wave radials will work just as well.  When you go up to 16 
wavelengths of wire then sixty four 1/4-wave radials will give you about 0.6 dB 
improvement over 128 1/8-wave radials.   

When we look at the gain improvement in figure 5.15 (the 1/4-wave vertical), we see 
similar behavior except that when we are using 8 wavelengths of wire there is a clear 
advantage to go from 1/8-wave to 1/4-wave radial lengths.  1/4-wave radials also work 
best when 16 wavelengths of wire are available.  If we go up to 32 wavelengths of wire 
(about 18,000'!) then radial lengths of 3/8-wavelength are best.   
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These graphs shed some light on a long standing rule of thumb: "the radials should be 
the same length as the height of the vertical".  In the case of the 1/8-wave vertical this 
seems to be true up to at least 8 wavelengths of total radial wire.  Beyond this, longer 
radials become a more effective use of the wire.  In the case of the 1/4-wave vertical, 
for small amounts of wire, 1/8-wave radials are best but as we make more wire 
available the 1/4-wave radials are superior.  The break point in radial number where 
you shift from 1/8-wave to 1/4-wave lengths is lower for the 1/4-wave vertical than the 
1/8-wave vertical.   

The physics of this seem fairly clear.  Once you have greatly reduced the losses near 
the base of the antenna, adding more close in copper doesn't buy much.  At some 
point it's time to put the copper further out and reduce more distant losses, which may 
be smaller but still significant. The difference in break point (in terms of radial number) 
between the two antennas stems from differences in the field intensities around the two 
antennas.  For the same power, the fields near the base of the 1/8-wave vertical will be 
much higher than those for the 1/4-wave vertical (see appendix TBD) so we need to 
put more effort into reducing the close-in power losses.   

The forgoing optimization was for relatively tall antennas.  Figure 5.16 shows an a 
short top-loaded vertical for 630m.   

 

Figure 5.16 - typical 630m antenna.  
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The vertical is 15.24m high (50', 0.024λ) with 7.62m (25', 0.012λ) radial arms in the hat.  
The usual practice for very short verticals is to have a dense ground system which 
extends some distance beyond the edge of the top-hat and/or a bit longer than the 
height of the vertical.  

5.10 Elevated ground systems 

In many cases the ground under and near the antenna may not be suitable for a buried 
radial system.  Systems with elevated wires are well known at HF, i.e. ground-plane 
verticals,  but these systems typically use radials with lengths close to λ/4.  For 
amateur installations this will not be possible but all is not lost.  In the early days of 
radio ground systems it was recognized that an elevated system called a 
"counterpoise" or "capacitive ground", with dimensions significantly smaller than λ/4, 
could be very effective.  Figure 5.17 shows an example of a counterpoise. 

Here is an interesting quotation from Laport[26] regarding counterpoises: 

"From the earliest days of radio the merits of the counterpoise as a 
low-loss ground system have been recognized because of the way in 
that the current densities in the ground are more or less uniformly 
distributed over the area of the counterpoise.  It is inconvenient 
structurally to use very extensive counterpoise systems, and this is the 
principle reason that has limited their application.  The size of the 
counterpoise depends upon the frequency.  It should have sufficient 
capacitance to have a relatively low reactance at the working 
frequency so as to minimize the counterpoise potentials with respect 
to ground.  The potential existing on the counterpoise may be a 
physical hazard that may also be objectionable." 

Rectangular counterpoises, some with a coarse rectangular mesh, were common.  A 
rather grand radial-wire counterpoise is shown in Figure 5.18.  Amateurs also used 
counterpoises.  Figure 5.19 is a sketch of the antenna used for the initial transatlantic 
tests by amateurs (1BCG) in 1921-22[27,28].  The operating frequency for the tests was 
about 1.3 MHz (230m).  At 1.3 MHz λ/4 = 189' so the 60' radius of the counterpoise 
corresponds to ≈0.08λ. 
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Figure 5.17 - A typical counterpoise ground system. Figure from Laport[26]. 

 
Figure 5.18- A very large LF elevated ground system. From [29]. 



20 
 

 

Figure 5.19 - EZNEC model of the 1BCG antenna. 

Note that in all these examples a large number of radials were used.   

We could replace the buried radial systems shown earlier with a counterpoise.  For 
safety reasons the counterpoise will have to be at least 8' off the ground so that there 
is no danger of casual contact with the high potentials on the counterpoise while 
transmitting.  For the moment we'll keep the height of the top of the vertical at 50' and 
assume a 16-wire, 25' radius umbrella with a skirt.  This means that the total length of 
the vertical will be reduced from 50' to 42'.  Figure 5.20 shows a comparison between 
64 radial buried radial systems and 16 radial counterpoises (with skirt wires) as the 
radius of the ground system is varied from 10' to 50'.  Note, in figures 5.20-5.24 the 
solid lines are for the counterpoise and the dashed lines are for the buried wire system. 
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Figure 5.20 - A comparison between buried ground systems and counterpoises.   

With 16 radials the counterpoise is superior for radii less than 100'.  With 64 wires the 
counterpoise is better out to about 35' after which the buried system is better.  That's 
great but we have to remember that the counterpoise is a large and very visible 
elevated structure while the buried or ground surface system is out of sight.  In addition 
the counterpoise will require posts to support the ends, insulators at the outer 
periphery, a larger value for the loading inductor and an isolation choke for the 
feedline.   

This is just for one example.  To generalize to other configurations it's useful to look in 
more detail at what's happening to Rr and the loss components RL and Rg as we vary 
the ground system radius.  Figures 5.21 through 5.23 show comparisons between a 
buried system and a counterpoise of Rr, RL and Rg as a function of radial length. Note, 
the top is constant at 50', for the counterpoise H=42' but for the buried system H=50'. 
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Figure 5.21 - Comparison for Rr between buried and counterpoise ground systems.  

 

Figure 5.22 - Comparison for RL between buried and counterpoise ground systems.   
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Figure 5.23 - Comparison for Rg between buried and counterpoise ground systems.   

As the figures show, there are significant differences between the values and behavior 
of Rr, RL and Rg.  As shown in figure 5.21, Rr for the vertical with a counterpoise is 
significantly lower than the ground based system.  The reason for this is that the length 
of the vertical is shorter with the counterpoise (42').  For short verticals, Rr varies as 
the square of the length.  For example comparing Rr' at 42' to Rr at 50', where Rr=0.79 
Ω:  

𝑹𝑹𝒓𝒓′ = �𝟒𝟒𝟐𝟐
𝟓𝟓𝟓𝟓
�
𝟐𝟐
𝟓𝟓.𝟕𝟕𝟕𝟕 = 𝟓𝟓.𝟓𝟓𝟓𝟓 𝜴𝜴    

Which agrees with what we see in figure 5.21.  If we have a vertical taller than 50' the 
reduction in Rr from shortening it's length by 8' will be reduced but if the vertical is 
shorter than 50' the reduction in Rr will be greater.   

Figure 5.22 shows how much larger RL becomes when the counterpoise is employed.  
This comes from two sources: first, Xc is larger due to the shorter length and second, 
the counterpoise itself introduces a reactance (Xcp) in series with Xc.  For resonance, 
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XL=Xc+Xcp, the loading inductor will be larger which increases RL.  Increasing the 
radius of the counterpoise and the number of radial wires reduces Xcp. 

The trends in figures 5.21 and 5.22 would seem to favor the buried ground system but 
figure 5.23 gives the opposite message.  Figure 5.23 shows the counterpoise is indeed 
a very efficient ground system which has much lower ground losses as seen in the 
lower values for Rg.  When you combine the values in figures 5.21-5.23 with equation 
(2) you get the result shown in figure 5.24 where the counterpoise has better efficiency 
for the smaller radii (<40').   

In some ways however, the comparison just made between a ground base system and 
a counterpoise is a bit misleading because I assumed that the overall height of the 
vertical was limited to a fixed value (50').  If we keep H=50' and simply elevate the 
entire vertical 8' so that the top is now at 58' then the results are different as shown in 
figure 5.24 where the dashed lines are for buried wire ground systems and the solid 
lines are for a counterpoise with the same number of radials and radius. 

 

Figure 5.24 - Efficiency comparisons between counterpoise and buried wire ground 
systems for top heights of 50' and 58'.   
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What we see in the upper two traces in figure 5.24 is that simply raising the entire 
antenna up 8' and substituting the counterpoise for the buried wire system, there is a 
large improvement in efficiency and the counterpoise is superior at all radii up to 50' or 
more.  You could argue that if we can raise the entire antenna 8' we could just as well 
have simply increased H to 58' and retained the buried ground system but as we can 
see in figure 5.24,  the counterpoise is still better at least out to radii of 50'.     

The  point being made here is that if you have reasonable heights for the vertical and 
lots of capacitive top-loading but very restricted room for the ground system, then a 
counterpoise may be the best option.  But we have to be careful in drawing general 
conclusions from the limited examples given here.  There are many variables: ground 
characteristics, height of the top of the vertical, height of the bottom of the vertical, the 
amount of top-loading, the number of wires in the counterpoise, the radius, etc.  The 
choice between buried wire and counterpoise ground systems is not obvious!  The 
considerable mechanical complexity, vulnerability to ice damage and visual impact of a 
counterpoise may also militate against it.  This choice has to be made on a case-by-
case basis and will probably require modeling with NEC4 software. 

5.11 Summary 

This discussion has shown many examples for ground systems from which we can 
draw the following conclusions: 

...the ground system can be elevated, on the surface or buried.  
Properly designed any of these will work... 

...a significant number of radials must be used, 16 or more for 
elevated systems and 50 or more for ground based systems... 

...the radial length should be somewhat greater than the height 
of the vertical and extend beyond the outer edge of the top-
loading... 

...a counterpoise may be a good choice for the ground system... 

 

 

 



26 
 

References 

[1] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 1, Test Setup and Instrumentation”, QEX, January/February 
2009, pg. 21 

[2] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 2, Excessive Loss in Sparse Radial Screens”, QEX, 
January/February 2009, pg. 48 

[3] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 3, Comparisons Between Ground Surface and Elevated Radials”, 
QEX, March/April 2009, pg. 29 

[4] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 4, How Many Radials Does My Vertical Really Need?”, QEX, 
January/February 2009, pg. 38 

[4] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 5, Ground Systems For Multi-band Verticals”, QEX, 
January/February 2009, pg. 19 

[6] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 6, 160m Vertical Ground System”, QEX, January/February 2009, 
pg. 15 

[7] Severns, Rudy, N6LF, “Experimental Determination of Ground System Performance 
for HF Verticals, Part 7, Ground Systems With Missing Sectors”, QEX, 
January/February 2010, pg. 18 

[8] Severns, Rudy, N6LF, “An Experimental Look at Ground Systems for HF Verticals”, 
QST, Mar 2010, pg. 30 

[9]  R. Severns, N6LF, MEASUREMENT OF SOIL ELECTRICAL PARAMETERS AT 
HF, ARRL, QEX magazine, Nov/Dec 2006, pp. 3-9 

[10] R. Severns, N6LF, “Verticals, Ground Systems and Some History,” QST, Jul 2000, 
pp 38-44 

[11] Abbott, Frank, Design of Optimum Buried-Conductor  RF Ground System, IRE 
proceedings, July 1952, pp. 846-852 

[12] Rudy Severns, N6LF, Radial System Design and Efficiency in HF Verticals, 2008, 
available at www.antennasbyn6lf.com  



27 
 

[13] Rudy Severns, N6LF, The Case of Declining Beverage-on-Ground Antenna 
Performance, QST June 2016, pp. 38-41 

[14] Rudy Severns, N6LF, The Case of Declining Beverage-on-Ground Antenna 
Performance, QEX Jul/Aug 2016, pp. 7-18 

[15] Rudy Severns, N6LF, Determination of Soil Electrical Characteristics Using a Low 
Dipole, QEX Nov/Dec 2016, pp. 5-8 

[16] Brown, Lewis and Epstein, “Ground Systems as a Factor in Antenna Efficiency,” 
Proc. IRE , Jun 1937, pp. 753-787 

[17] George H. Brown, A Theoretical and Experimental Investigation of the Resistance 
of Radio Transmitting Antennas, University of Wisconsin, Madison, Ph.D. thesis, June 
1933. 

[18] George H. Brown and Ronold King, High-Frequency Models in Antenna 
Investigations, IRE proceedings, Volume 22, Number 4, April 1934, pp. 457-480 

[19] George H. Brown, The Phase and Magnitude of Earth Currents Near Radio 
Transmitting Antennas, IRE proceedings, Volume 23, Number 2, February 1935, pp. 
168-182 

[20] H.E. Gihring and G.H. Brown, General Considerations of Tower Antennas for 
Broadcast Use, IRE proceedings, Volume 23, Number 4, April 1935, pp. 311-356 

[21] G. H. Brown, A critical Study of the Characteristics of Broadcast Antennas as 
Affected by Antenna Current Distribution, IRE proceedings, Volume 24, Number 1, 
January 1936 

 [22] Rudy Severns, N6LF, Radiation Resistance Variation with Radial System Design, 
QEX Jul/Aug and Sept/Oct 2015. 

[23] J. Stanley, “Optimum Ground Systems for Vertical Antennas,” QST, Dec 1976 

[24] R. Sommer, N4UU, "Optimum Radial Ground Systems", QST August 2003, pp. 
39-43 

[25] Al Christman, K3LC, "Maximum-Gain Radial Ground Systems For Vertical 
Antennas", NCJ magazine, March/April 2004, pp. 5-10 

[26] Laport, Edmund, Radio Antenna Engineering, McGraw-Hill, 1952.  You can find 
this one free on-line by Googling Edmund Laport. 

[27] Burghard, George, "Station 1BCG", QST, February 1922, pp. 29-33 



28 
 

[28] Kelley and Hudson, "Hams Span the Atlantic on Shortwave!", QST, December 
1996, pp. 28-30 

 [29] Admiralty Handbook of Wireless Telegraphy, His Majesty's Stationary Office, 
1932, pg. 799, Figure 452 



1 
 

Chapter 6 
Design and Fabrication of High-Q Tuning Inductors for 

LFMF Antennas 
6.0 Introduction 

The electrically small antennas typical of 630m and 2200m amateur installations can 
be represented by the equivalent circuit in figure 6.1. 

 

Figure 6.1 - LFMF antenna equivalent circuit. 

The antenna is simply a capacitor in series with a resistor.  The capacitive reactance 
(Xc) is very large and the series resistance (Ra) is small.  Most of Ra comes from 
ground system and conductor losses.  The radiation resistance (Rr) is typically only a 
very small part of Ra.  To supply power to the antenna it's necessary to transform the 
highly reactive feedpoint impedance of the antenna to a resistive value compatible with 
the feedline, usually Ri=Zo=50Ω.  The series inductor (XL) performs two functions: 
canceling the input reactance (+XL-Xc=0) and a means to transform Ra to the desired 
value for Ri which is often done with an adjustable tap on the inductor although there 
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are other possibilities.  Unfortunately any practical inductor will have losses 
(represented by RL) which can reduce efficiency substantially.   

The radiation efficiency (𝜼𝜼) can be expressed as: 

𝛈𝛈 = 𝐑𝐑𝐑𝐑
𝐑𝐑𝐑𝐑+𝐑𝐑𝐑𝐑

= 𝐑𝐑𝐑𝐑
𝐑𝐑𝐑𝐑+𝐑𝐑𝐑𝐑+𝐑𝐑𝐑𝐑+𝐑𝐑𝐑𝐑+⋯

     (6.1) 

Where Rr is the radiation resistance, RL is the inductor loss resistance, Rg represents 
ground system loss, Rc represents conductor loss and miscellaneous other losses.  
Usually Rr will be very small, a fraction of an ohm, but RL and Rg are typically much 
larger.  In most cases RL and Rg dominate the efficiency so every effort must be made 
to minimize these losses.   For an inductor: 

𝐗𝐗𝐑𝐑 = 𝟐𝟐𝛑𝛑𝛑𝛑𝐑𝐑     (6.2) 

𝐐𝐐 ≡ 𝐗𝐗𝐑𝐑 
𝐑𝐑𝐑𝐑
→   𝐑𝐑𝐑𝐑 = 𝐗𝐗𝐑𝐑

𝐐𝐐
     (6.3) 

Where f is the operating frequency and L is the required inductance.   

Increasing loading inductor Q is a primary tool for maximizing efficiency. 

This chapter addresses the design and fabrication of high Q inductors using materials 
commonly available.  Historically many different coil constructions have been tried but 
the focus here is on cylindrical single layer air wound coils using round wire because 
these are common and practical.  Examples of flat spiral or "pancake" inductors, 
toroidal inductors, non-circular coil forms and basket-weave windings will be shown but 
not discussed in detail.   

The discussion covers a lot of ground at considerable length and it's fair to ask "is all 
this verbiage actually useful?"  Many articles and even whole books on inductor 
design, along with free software CAD programs[1], already exist.  From a practical point 
of view do we really need more?  It turns out that the design of tuning inductors for 
630m and 2200m is significantly more complicated than typical HF inductors. For 
example, LF, MF and HF inductor designs must take into account both skin and 
proximity effects: 

• The resistance of a wire is ≈Rdc at low frequencies but as the frequency is 
increased  the resistance increases very substantially, this is called "skin effect". 
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• When a conductor is wound into a coil the current in one turn induces loss in 
adjacent turns, this is called "proximity effect".  

These two effects impact the design when high Q is desired but there is another effect, 
"self-resonance", which is rarely important at HF but frequently limits Q at 630m and 
2200m: 

• Coil inductors behave very much like transmission lines with a multitude of 
harmonically related resonances.  The lowest self frequency resonance (SRF) 
can significantly impact both inductance and Q. 

All three effects must be included in the design of LFMF inductors.  Fortunately we are 
able to accurately calculate all these effects but some of the equations are complex 
and all of them are interrelated making pencil and paper calculations impractical.  
Spreadsheets can be used but that's practical for only the most dedicated 
algebraphiles.  Fortunately Brian Beezley, K6STI, has created an inductor design 
program[1], COIL, which takes into account all the complexity while keeping it out of 
sight.  Both COIL and spreadsheet calculations were used for this chapter. 

6.1 How much inductance? 

When designing a new inductor the very first question is "what value of inductance (L) 
is needed and at what frequency (f)?"  To resonate the antenna enough XL is needed 
to cancel the capacitive reactance (Xa) at the feedpoint, i.e. XL=Xa (figure 6.1):   

𝐑𝐑 = 𝐗𝐗𝐑𝐑
𝟐𝟐𝛑𝛑𝛑𝛑

     (6.4) 

When f is in MHz L will be in μH. 

To estimate the needed inductance we can convert the values for Xa derived in 
chapter 3 to inductance in uH  as shown in figures 6.2 and 6.3.  In these figures an 
italic L identifies the total length in feet of the top-loading wire.  It should be pointed out 
that although figures 6.2 and 6.3 assume a "T" with a single top-wire, the values for the 
loading inductor would be the same for any capacitive top-loading structure which 
provides the same amount of capacitive loading.  The shape of the hat is not what's 
important, it's the added capacitance!  
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Figure 6.2 -Tuning inductor inductance for resonance at 475 kHz. 

 

Figure 6.3 - Tuning inductor inductance for resonance at 137 kHz. 
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From figures 6.2 and 6.3 we see:   

• At 475 kHz, for resonance, L ≈ 200μH →1000μH.   
• At 137 kHz, for resonance,  L ≈ 3mH→20mH. 

6.2 Definitions 

Some useful variables can be defined with the help of figure 6.4.  

 

Figure 6.4 - inductor dimensions (From Knight) 

c → winding pitch , center-to-center spacing between turns  

d → diameter of the winding conductor 

D → diameter of the winding. Wire center-to-wire center 

l → coil length 

L→ actual inductance at the operating frequency 

lw→ length of the winding conductor 

N → number of turns in the winding 

Design graphs and equations can be made more general using geometric ratios as 
variables.  For example: 

• (d/c) → conductor diameter/turn center-to-center spacing ratio 
• (l/D) → coil length/diameter ratio 
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In practice the normal ranges for these ratios are: 0.2<l/D<10 and 0.3<d/c<0.7.  l/D=0.2 
represents a very short winding with a large diameter.  l/D=10 represents a long tubular 
coil with a small diameter.  Figure 6.5 uses these ratios to illustrate how variable the 
inductance can be when a coil is wound in different ways using the same length of wire 
(lw).  For this example lw=100' and d=0.081" (#12 wire).  The dashed contours 
correspond to constant values of l/D.  Note that for all values of d/c, maximum 
inductance occurs at l/D=0.45.  In this example Lo varies from ≈50 to 460 uH, a range 
of 9:1 with the same piece of wire.  How the coil is wound really matters!  Note the use 
of Lo for the inductance, L.  Lo is the very low frequency (1 kHz) inductance.  Due to 
self resonance L may be much larger and vary over an even greater range.  This will 
be addressed a following section.  

 

Figure 6.5 - Inductance versus diameter with d/c and l/D as parameters. 
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6.3 Practical inductors 

A new design starts with the value for the inductance and the operating frequency (f).  
It's a good idea to make L  5-10% larger to allow for adjustment using taps on the coil 
but you don't want to go overboard as the unused portion of the coil still affects fr 
potentially lowering Q.  Keep in mind that the actual inductance will vary with frequency 
so the value chosen needs to be the correct value at the operating frequency.  

Because coil loss (RL) and value of L depend on frequency it is necessary to know f at 
the beginning.  For amateurs, the values for f are very limited (2200m→135.7-137.8 
kHz, 630m→472-479 kHz) so in the following discussion f=137 kHz is used for 2200m 
coils and f=475 kHz for 630m coils.  

To fabricate an inductor some details are needed: 

• diameter (D),  
• winding length (l),  
• number of turns (N),  
• wire size or diameter (# or d)  
• turn spacing (d/c) 
• length of the wire in the winding (lw). 

Some of these can be chosen initially and the rest derived either from graphs or COIL. 

Insulated THHN wire is frequently used for windings.  Because it's wide use in home 
wiring this wire is relatively inexpensive and readily available.  Other types of wire can 
certainly be used.  Three sizes are commonly used: #14 (0.064"/1.63mm), #12 
(0.081"/2.05mm) and #10 (0.102"/2.59mm).  For winding design some wire dimensions 
are needed.  These are listed in table 1. 

Table 1 - Typical wire dimensions 

wire # nominal 
diameter  

diameter over 
insulation 

assumed 
diameter 

maximum 
turns/inch 

d/c 
maximum 

10 0.102" 0.165" 0.17" 5.9 0.60 
12 0.081" 0.117" 0.12" 8.3 0.69 
14 0.064" 0.098" 0.10" 10.2 0.64 

 



8 
 

The "nominal" diameters come straight out of a standard wire table.  Using a 
micrometer one often finds wire diameters are a tad under the specification, perhaps a 
mil or more, which usually doesn't matter too much.  The diameters over the insulation 
are measured values from a several samples but there can be considerable variation 
so don't be surprised if you can't get as many turns on a form as expected or the 
winding is not as long as predicted.  The "assumed" diameter allows for some 
additional insulation thickness and is the value used for the graphs and calculations 
that follow.  The maximum turns/inch and d/c maximum are based on the assumed 
diameters.  With insulation the maximum turns/inch will be less that with bare wire.  
However, with bare wire some spacing will be needed between the turns and it's 
usually not practical to have spacings much smaller than typical insulation thickness.  

6.3.1 Turn spacing warning! 

Do not use tightly wound windings with no air space between turns! 

Here's the reason for that warning.  

 
Figure 6.6 - Plastic bucket inductor examples. 
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Either insulated or bare wire can be used for the winding.  Q measurements comparing 
the same coil with insulated wire versus bare wire[11,12] shows very little difference 
except for very tight (closely packed) windings being used.  This effect was 
demonstrated by experiment.  To illustrate tight versus loose windings two inductors 
(Lo≈1mH) were fabricated with insulated wire on plastic buckets.  The black bucket had 
a very tight winding and the white bucket a somewhat looser winding.  Two versions 
were wound on the white bucket and the Q measured.  In the first example the inductor 
was wound with new  #12 THHN wire directly off the original spool so it was smooth 
allowing a very tight winding like that shown on the right in figure 6.6.  After  completing 
some measurements the winding on the white bucket was unwound and as a result of 
handling the wire became a bit lumpy.  This wire was then rewound on the same 
bucket but this time the winding was significantly longer, ≈+1", with small air gaps 
between the turns as shown on the left in figure 6.6.   

  

 
Figure 6.7 - Comparison between tight and loose windings. 

 
Figure 6.7 compares the Q measurements with tight and loose windings.  There is a 
substantial difference!  In a tight winding the insulation on each turn is pressed closely 
to the turns on either side which increases winding capacitance and reduces self-
resonant frequency (fr) which in turn reduces Q as f approaches fr.  It should be noted 
that the reduction in Q with an insulated wire winding is due to a lower fr, not dielectric 
loss in the insulation.   
 
Here is some more experimental work.  Figure 6.8 is a trial "bucket" inductor for a 
variometer.   Q measurements and COIL predictions are graphed in figure 6.9. Note 
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SFR differs by almost a factor of 3!  Note the internal variometer coil was not present 
for this test. 

 

 
Figure 6.8 - Bucket inductor. 

 

Figure 6.9 - Bucket inductor Q measurements versus prediction. 
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Now, same kind of bucket, same wire, about the same inductance but using a spaced winding 
shown in figures 6.10 and 6.11. 

 

Figure 6.10 - Spaced winding 

With the following comparison graph. 

 

Figure 6.11 - spaced winding inductor example. 
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Enough said, space the turns at least a small amount. 

6.3.2 Bucket inductors 

Plastic buckets are inexpensive and universally available in many different sizes (1, 2, 
5, 7, etc gallon) as shown in figures 6.12.  Five gallon buckets are probably the most 
often used size for coil forms.  Better quality buckets are made from High Density 
Polyethylene (HDPE).  At LFMF PVC and HDPE have very little dielectric loss.  Not all 
buckets are HDPE, while the HDPE is common there are many lower quality buckets 
on the market.  Look on the bottom of a prospective bucket, there should be a small 
triangle with 2 in it and HDPE underneath.  The wall thickness of the bucket in mils 
should also be there.  

 

Figure 6.12 - Typical buckets. 

A plastic bucket can be used as a coil form but some thought must be given to the 
winding process.  Because the bucket is smooth plastic with some taper and wire 
insulation is also smooth plastic, the wire tends to slide around as the coil is moved.  
There is a simple trick which helps keep the turns in place with the desired turn-to-turn 
spacing: attach several (6-8) vertical strips of double sided mounting or carpet tape 
vertically before winding.  These are the dark strips in figure 6.10.  This does a good 
job of holding the wire in place.  A simple 2"X4" frame like that shown in figure 6.14 as 
a "winding machine"  will make the job a lot easier.  Figure 6.13 shows 1/2" iron pipe 
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fittings attached to the top and bottom of the bucket.  Small square plywood blocks 
were used on the inner sides of the bucket bottom and lid to stiffen them and anchor 
the screws.  The stanchion bases are attached with screws through the bucket into the 
blocks.   

 

Figure 6.13 - Bucket modification for winding. 

 

Figure 6.14 - Winding machine example. 
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Buckets come in a wide variety of sizes but once a choice is made both the diameter 
and the maximum winding length are predetermined which limits the possible 
inductance values.  A 5 gallon bucket example can be used to illustrate these limits.    

 

Figure 6.15A - 5 gallon bucket example L versus N at 137 kHz. 

 

Figure 6.15B - 5 gallon bucket example L versus N at 475 kHz. 

Figure 6.15 shows the relationship between N and L at 137 kHz and 475 kHz for two 
wire sizes (#12 & #14).  For each wire size there are two turn spacings (Turns/inch).  
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For #14 wire 10.2 T/in represents about the tightest possible winding.  5 T/in 
represents wider spacing which is used to reduce proximity loss increasing Q.  For #12 
wire 8.3 and 4 T/in are used.  The graphs illustrate that larger wire and greater spacing 
means fewer turns because the maximum winding length is constrained to <12".  But 
as shown in figure 6.16, larger wire and greater turn spacing yield higher Q.   

 

Figure 6.16A - Inductor Q at 137 kHz.   

Using #14 wire tightly wound an inductance of 2.5 mH at 137 kHz and almost 4 mH at 
475 kHz can be obtained but the Q for that inductor will be modest: ≈420 at 137 kHz 
and ≈520 at 475 kHz.  As the graphs show, either increasing the wire size and/or the 
turn spacing increases Q but reduces the maximum inductance. For example at 475 
kHz, increasing the wire size from #14 to #12 increases Q (@L=2mH) from ≈550 to 
≈610 but the maximum L is now <2.1 mH.  For L=400 uH, if we go from closely spaced 
# 14 to wide spaced #12 Q goes from 500 to 780 which is a considerable 
improvement, but L is now constrained to <400 uH.  The user has to keep these trade-
offs in mind when choosing inductor parameters. 
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Figure 6.16B - Inductor Q at 475 kHz. 

 
6.3.3 Maximum Q inductors 

If a really high-Q inductor is wanted then most likely a  special coil form will be needed.  
PVC pipe and fittings make it very easy to fabricate a large form with arbitrary 
dimensions.  Figure 6.17 shows two examples of PVC cage coil forms.  In figure 6.17A 
the octagonal rings are 1/2" pipe joined with 45° elbows.  Because the winding 
compresses the form it is usually not necessary to glue the rings which makes 
fabrication much easier!  The eight vertical supports used 3/4" pipe with slots cut at 
intervals (=c) to hold the wire.  As an alternative the turns in figure 6.17B were 
constrained with double sided tape.  
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Figure 6.17A - PVC cage coil form. 

 

Figure 6.17B - N1DAY PVC cage coil form. 
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Figure 6.18 - Cutting the wire slots. 

Figure 6.18 shows a practical way to cut slots.  Temporarily screwing the supports to a 
board makes it much easier to align all the slots and mounting holes.   

A clever example of a very light weight inductor (≈18"X18") is shown in figure 6.19.  
Pat, W5THT, fabricated the coil form by wrapping F/G mat around a cardboard tube,   
then impregnating the mat with epoxy and when it had cured, soaking the assembly in 
water to soften the cardboard for removal, leaving a thin shell on which he wound 1/2" 
wide copper tape.  A protective covering of paint was then applied.  The light weight of 
the inductor allowed him to hoist it to the top of his vertical where it joined the 
capacitive hat. One could also purchase a sheet of thin plastic and roll it to make the 
coil form. 

 

Figure 6.19 - Pat W5THT, foil wound lightweight inductor. 
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Optimizing Q 

Using COIL a modeling experiment optimizing Q was done with very interesting 
results.  First, Q's of 500 to over 900 were readily obtained.  Second, the diameter (D) 
associated with each optimized test value was found to change only a small amount 
over the full range of inductance values for a given wire size and frequency.  Third, the 
spacing ratio (i.e. wire diameter/turn-to-turn spacing, d/c) was found to have a very 
small range, d/c≈0.30-0.32, for every example over the entire range of inductance and 
wire size!  d/c can be converted to the more useful parameter p ("turns-per-inch") for 
each wire size as shown in table 2. 

Table 2 - Turns/inch for d/c=0.31 

wire size p [T/in] rounded p  [T/in] 
14 4.84 5 
12 3.83 4 
10 3.07 3 

 

Table 3 shows the averaged diameters associated with optimized inductors.  

Table 3 Averaged values for D and p (turns/in) for optimum Q 

 #14 #14 #12 #12 #10 #10 
frequency T/in D T/in D T/in D 
137 kHz 5 28" 4 32" 3 36" 
475 kHz 5 15" 4 17" 3 19" 

 

Table 3 suggests coil diameters of 1.5' to 3', these are not small coils!  Using these 
values for wire size, diameter, T/in and frequency, the Q's were recalculated and 
graphed as shown in figure 6.20.  When compared to the original "optimized" Q values, 
the Q values derived using the averaged dimensions were within a few percent.  The 
difference was not worth worrying about!  What this means is that right up front, for a 
given frequency and wire size you know the coil diameter and the turns spacing.  The 
only missing information is the number of turns (N), the required coil form length (l) and 
the total length of wire needed for the winding (lw).  N can be determined from COIL or 
figure 6.21.   
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The length of the winding (the minimum length of the coil form!) is simply: 

𝐥𝐥 = 𝐍𝐍/𝐩𝐩  [inches] (6.5) 
And the total length of the wire in the winding is: 

𝐥𝐥𝐥𝐥 = 𝐍𝐍𝛑𝛑𝐃𝐃
𝟏𝟏𝟐𝟐

  [𝛑𝛑𝐟𝐟]  (6.6) 

 

Figure 6.20A - Optimized Q at 137 kHz. 
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Figure 6.20B - Optimized Q at 475 kHz. 

 

Figure 6.21A - N versus L for optimized inductors at 137 kHz. 
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Figure 6.21B - N versus L for optimized inductors at 475 kHz. 

6.3.4 Litz wire windings 

To minimize skin and proximity effects might appear all we have to do is use very small 
wire.  The New England Wire Technologies catalog suggests #40 for 137 kHz and #44 
for 475 kHz.  The problem with single wires this small is high Rdc.  The solution is to 
use many small wires in parallel but simply paralleling wires in a bundle doesn't buy 
anything because the current still flows on the outside  of the bundle.  In fact ordinary 
stranded wire has slightly greater loss than solid wire at RF frequencies.  But if we use 
individually insulated wires and twist the bundle during assembly in such a way that 
every wire is periodically transposed from the outside to the inside and then back, the 
current distribution can be much more uniform across the wire bundle and RL 
significantly lower.  This type of construction is known as "litz wire".  The formal name 
is "litzendraht", which comes from German, litzen→strands and draht→wire,  "stranded 
wire".  The strands in this wire are individually insulated and twisted to provide the 
required transposition.  Figure 6.22 (taken from the New England catalog) shows how 
the strands are assembled.  Initially seven strands are twisted together.  To make the 
wire bundle larger (Rdc smaller) multiple bundles are twisted together.  This process 
can be extended to have an Rdc equivalent to a given solid wire as shown in table 4.   
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Table 4 - Litz wire examples. 

frequency equiv. 
AWG 

Cir. 
mil 

area 

no. 
strands 

strand 
AWG 

nom. 
O.D. 

Rdc 
Ω/1000' 

137 kHz 12 6,727 700 40 0.118 1.76 
475 kHz 12 6,600 1650 44 0.117 1.91 

 

The advantage of litz is that it can substantially increase Q at LF and MF when used in 
place of solid wire.  It is also very soft and pleasant to work with.  But there are 
downsides!  The cost is much higher than equivalent solid wire and there is the 
problem of reliably soldering 1600+ individually insulated wires to make connections at 
the wire ends.  Soldering can be done but requires a careful choice of wire insulation 
and technique.  Those interested in using litz should go to the wire manufactures 
catalogs and applications notes.  

 

Figure 6.22 - Examples of litz construction. 
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Litz wire can be useful but we cannot use just any litz.  Michael Perry[2] has published a 
formal analysis of litz wire construction which contains a cautionary tale as shown in 
figure 6.23!  

 

Figure 6.23 - Rac comparison between solid and litz wire.  From Perry[7]. 

The wire diameter is in skin depths.  Rac between a solid conductor and a litz 
conductor are compared.  Litz can have a small number of wires and only a few layers 
or many wires forming many layers.  In general the more layers and the smaller the 
individual strands the greater the improvement.  However, there is a trap here!  The 
reduction in Rac occurs only over a small range of wire sizes at a given frequency or, 
for a given wire size, over only a narrow range of frequencies.  The key point shown in 
this graph is: 

If the individual wire size is too large or equivalently if the frequency is 
higher than the minimum Rac point, Rac can be much higher using litz than 
in an equivalent solid wire! 

The following quotation from Perry should be taken to heart if you are considering litz 
wire: 

"The foregoing analysis indicates some surprising design results which 
may directly contradict widely held beliefs regarding ac resistance in wires 
and cables.  For example, suppose a solid conductor is excited at a certain 
frequency which results in a radius which is many times the skin-depth.  
Then, assume a designer switches to a cable of the same total diameter but 
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with several layers of stranded wire to reduce losses such that d/δ>2.  By 
inspection of Fig. 6.23, this process can result in far greater losses than if 
the "solid" conductor were employed. Stated another way, an uninformed 
design of Litz wire can result in a performance characteristic which is 
much worse than if nothing at all were done to reduce losses! 

A second and important fact is that the cross-sectional area of a cable 
comprising stranded wires is substantially reduced from the conducting 
area of a "solid" cable of the same radius.  This is due to the fact that each 
strand is usually round and insulated with a varnish or other 
nonconductor.  The round insulated wires in the cable yield a "packing 
factor" which reduces the conducting area by a significant fraction, usually 
at least 40 percent. The transposition process further reduces the cross-
sectional area available for carrying current.  The final result is a 
substantial reduction the net savings available in ac resistance by utilizing 
Litz wire.  Due to these limitations, the Litz wire principle for reducing ac 
losses must be thoroughly understood in the context of a specific 
application before it should be employed." 

6.4 Variable inductors 

Often the exact value of L needed to resonate the antenna may not be known in 
advance!  If the antenna has already been built and an accurate measurement of the 
input impedance is available, L will known but the necessary instrument may not be 
available or the antenna may not yet have been built!  With careful modeling we can 
get a good estimate of the value for L within ≈5-10% depending on how close the 
model is to the actual antenna.  Even if we measure the input impedance with a VNA 
that measurement is only at one particular time!  The short heavily loaded verticals 
used at LFMF have high Q's, i.e. very narrow bandwidths and are very prone to 
detuning, particularly as the seasons change from dry to wet.  The shunt capacitance 
of the antenna will change with soil conductivity which changes with moisture content.  
Frost or water droplets on the wire will also detune the antenna.  To accommodate this 
change in shunt capacitance some adjustment of L is almost always needed.  How 
much adjustment is needed?  Referring to figure 6.1, the antenna and loading coil form 
a simple series resonant circuit where the resonant frequency (fo) can be expressed 
by: 

𝛑𝛑𝐟𝐟 = 𝟏𝟏
𝟐𝟐𝛑𝛑√𝐑𝐑∙𝐂𝐂𝐑𝐑

= 𝟏𝟏
√𝐗𝐗𝐑𝐑∙𝐗𝐗𝐑𝐑

     [μH] (6.7) 
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At the least you will want to be able to tune across a band.  On 630m the band is 7 kHz 
wide or ≈1.5%.  On 2200m the band is 2.1 kHz wide, also ≈1.5%.  fr varies as the 
square root of XL so a range of ≈3% minimum is needed.  Again, as a practical matter, 
you should be able to vary the value of L over a range of at least 5% to 10%, with a 
resolution or steps smaller than 1%. 

6.4.1 Tapped inductors 

 One of the simplest ways to vary L is with taps as illustrated in figure 6.24.  The idea is 
to have a few widely spaced taps for coarse adjustment and then a group of closely 
spaced taps for finer resolution.  The initial coarse adjustment is made by tapping 
down from the top of the coil and the fine adjustment by tapping up from the bottom 
(referring to the picture).  However, installing a lot of taps can be a nuisance.  An 
alternative is to put only a few taps on the main loading inductor and add a small roller 
inductor, like that shown in figure 6.25, in series for fine adjustment.  This is a 
particularly convenient  arrangement when doing final adjustments or making 
adjustments to compensate for seasonal changes.  While roller inductors are often 
seen at ham flea markets usually the inductance is <100 uH which is usually too small 
for all the variation needed.  The best option is usually a roller inductor for trimming in 
series with a larger tapped high-Q inductor providing the bulk of L.  
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Figure 6.24 - Large commercial inductor. 

 

Figure 6.25 - Roller inductor example. 

 

Tap placement 

Locating taps requires some thought.  When l and D are constant, L is proportional to 
N2.  However, when you are adding/removing turns or moving between taps the rate of 
change of L will vary between because you're changing both N and l.  For small N the 

rate of change of L is close to ∝N2 but as more turns are added the rate of change 

decreases approaching ∝N.  Keep this in mind when selecting tap locations. 

One additional point when using taps, SRF does not change greatly when moving to a 
lower tap.  An analog for that situation is tapping down on a transmission line as shown 
in figure 6.26.  SRF is still determined by the total length of the transmission line.  In 
practice moving to a tap will shift the location of the parasitic capacitance (Cp) and this 
will shift SRF but usually not a lot. 
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Figure 6.26 - Tapped transmission line model. 

6.4.2 The variometer 

Another option is to use a "variometer", which mechanically varies the coupling 
between two windings in series.  Early radio books show an astonishing range of 
mechanical arrangements well worth reviewing for useful ideas.  One of the most 
common arrangements is shown in figure 6.27 where a small secondary coil is inserted 
inside a primary coil, connected in series with the primary  and rotated to change the 
coupling.  The outer or primary coil has length = l1, radius = r1 and N1 turns.  The inner 
or secondary coil has length = l2, radius = r2 and N2 turns.  The angle between the coil 
axis is θ⁰. 

 

Figure 6.27 - Variometer principle. 
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Figure 6.28 - Approximate coil flux. 

Figure 6.28 is a sketch of the magnetic field associated with two coils. On the left the 
axis of both coils is collinear.  On the right the axis' are at 90⁰.  When the axis is 
parallel most, but not all, of the magnetic flux is the primary coil also passes through 
the secondary coil.  

 

Figure 6.29 - Series aiding versus series opposing. 
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How do we get a variable inductance by varying  the coupling?  Figure 6.29 shows two 
coils (L1, L2) connected in series.  In (A) L1 and L2 are connected series aiding and in 
(B) series apposing.  The value for L can be expressed as: 

𝐑𝐑 = 𝐑𝐑𝟏𝟏 + 𝐑𝐑𝟐𝟐 ± 𝟐𝟐𝐌𝐌     (6.8) 

Where M is the "mutual" inductance: 

Note that M can be either + or -.  +M corresponds to series aiding connection and -M to 
series apposing which can be adjusted by rotating the secondary coil. M will vary 
approximately as the cos(θ).   

We can calculate M from: 

𝐌𝐌 = 𝟎𝟎.𝟒𝟒𝐍𝐍𝟏𝟏𝐍𝐍𝟐𝟐𝛑𝛑𝟐𝟐𝐑𝐑𝟐𝟐
𝟐𝟐

𝐥𝐥𝟏𝟏+𝐑𝐑𝟏𝟏
   uH   (6.9) 

Where r and l are in meters.  

6.4.2.1 Bucket variometers 

We can gain good understanding of variometers by designing and testing an example 
shown in this section.  A frequent form of variometer among amateurs is built on a 
plastic bucket.  An example is shown in figure 6.30 

 

Figure 6.30 - bucket variometer example. 
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Figure 6.31 shows three possibilities for the inner inductor, L2.  the largest form is the 
top of a 2 gallon bucket, r2≈4.6"/0.117m.  The smallest form is a section of 4" PVC 
pipe, r2≈2.09"/0.053m  The middle form is the top of a 1 gallon bucket, r2≈3.5"/0.089m.  
For this discussion we'll compare two of them: PVC pipe and the 2 gallon bucket top. 

How much variation in inductance (±∆L) is wanted?  L1 for this example is ≈639 uH.  A 
typical range of variation would be ±10% or ±60 uH in this example.  For this inductor 
N1=56 turns, l1=11"/0.279m, r1=5.4"/0.137m. 

 

 

Figure 6.31 - Alternative L2 coil forms. 

From equation 6.8, ∆L=2M 

∆𝐑𝐑 = 𝟐𝟐𝐌𝐌 = 𝟎𝟎.𝟖𝟖𝐍𝐍𝟏𝟏𝐍𝐍𝟐𝟐𝛑𝛑𝟐𝟐𝐑𝐑𝟐𝟐
𝟐𝟐

𝐥𝐥𝟏𝟏+𝐑𝐑𝟏𝟏
   uH   (6.10) 

We know the following variables: 

∆L=60 uH, N1=56, l1=0.279m, r1=0.137m 

For the 2 gallon ring, r2=0.117m and for the PVC pipe, r2=0.053m. 

What we don't know is N2!  Rearranging equation 6.10 solving for N2: 
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𝐍𝐍𝟐𝟐 = ∆𝐑𝐑(𝐥𝐥𝟏𝟏+𝐑𝐑𝟏𝟏)
𝟎𝟎.𝟖𝟖𝐍𝐍𝟏𝟏𝛑𝛑𝟐𝟐𝐑𝐑𝟐𝟐

𝟐𝟐      (6.11) 

We can now calculate N2 for the two examples: 

• 2 gallon bucket top, N2=4.1 turns, use 4 turns.  
• PVC pipe, N2=19.5 turns, use 19 turns.  

Winding the calculated number of turns on each form and inserting them into the 
bucket and measuring,  ∆L=61 uH for the large ring and ∆L=62 uH for the PVC pipe 
showing that equation 6.11 is approximate but certainly close enough for practical 
purposes.  

In this example L≈639 uH with 56 turns.  Tapping down one turn L≈614 uh which is a 
shift of ≈25 uH.  Choosing ∆L=60 uH is comparable to moving the tap roughly two 
turns.  You could use less ∆L which should improve Q as shown in the next section but 
then you would  need to insert a sufficient number of taps. 

6.4.2.2 Variometer Q 

There is one very important consideration: how is the Q of L1 affected by inserting L2 
inside it?  In figure 6.27 we see that L2 is inside L1 immersed in the internal field of L1.  
This means that L2 will have it's normal self loss but also additional loss from the field 
of L1.  In addition, the external field of L2 will interact with the winding for L1, more 
loss.  There is also another reason for decreased Q.  

𝐐𝐐 = 𝐗𝐗𝐑𝐑
𝐑𝐑𝐑𝐑

  (6.12) 

When L1 and L2 are connected series aiding XL will be a maximum but when they are 
series apposing XL will be lower.  RL however, will probably not be lower so Q must 
decrease as L decreases.  Here are some Q measurements at 475 kHz for the 
variometer shown in figure 6.30: 

No center coil, Q=700 

For the 9" diameter 4T center coil, Q=500 for Lmax and Q=420 for Lmin. 

For the 4" diameter 19t center coil, Q=550 for Lmax and Q=530 for Lmin. 
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The message here is that adding a variable center coil to an inductor to create a 
variable inductor will significantly reduce Q.  I suggest the following guidelines: 

Use as few turns as possible on L2, i.e. design for the minimum needed inductance 
variation.  Use L2 for fine adjustments.  Use taps on the coil for course adjustments. 

From these admittedly limited experiments it appears that very large and small L2 
diameters give lower Q.  I suggest having the diameter of L2 equal to roughly half that 
of L1.  

6.4.2.3 Classic examples 

Figure 6.27 is just one of many arrangements as shown in figures 6.32 through 6.34.  
Some of these examples show flat strip windings but round wire will also work. 

 

 

Figure 6.32 - Variometer examples 
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Figure 6.33- More variometer examples. 
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Figure 6.34 - Even more examples. 
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6.4.2.4 Home brew examples 

 

 

Figure 6.35 - Ralph, W5JGV variometer example. 

As shown in figure 6.35, Ralph, W5JGV, has built lovely variometers using PVC pipe 
and copper wire.  The inductance of these variometers is not large but adequate for 
fine adjustment in combination with a tapped main inductor. The other option is to 
incorporate the variable inductance into the main inductor as shown in figure 6.36. 

LFMF hams have shown great creativity in the design of practical variometers as the 
following examples show. 
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Figure 6.36 - Laurence, KL7L.  Bucket variometer example.  

Figure 6.37 was fabricated by John, KB5NJD.  The base inductor is wound on the 
outside of a plastic bucket.  Inside the bucket is a smaller rotatable inductor.  The two 
inductors are connected in series.  By rotating the inner inductor the total inductance 
goes from the sum of both to the difference.  Given the need for adjustment at 
inconvenient times (pitch dark and snowing) many variometers have some form of 
remote tuning.  KB5NJD used an inexpensive TV antenna rotor for remote tuning!   
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Figure 6.37A- KB5NJD variometer. 

 

Figure 6.37.B - John, KB5NJD variometer adjustment with a TV rotor. 
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Figure 6.38A - Jay, W1VD, WD2XNS variometer. 

 

Figure 6.38B - Jay, W1VD, WD2XNS variometer. 
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Figure 6.38C - Jay, W1VD, WD2XNS variometer enclosure. 

 

Figure 6.39 - Steve, KK7UV, variometer. 
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Figure 6.40A -Neil, W0YSE, variometer. 

 

Figure 6.40B - W0YSE tuning unit circuit diagram. 
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Figure 6.40C - W0YSE variometer location. 

Neil, W0YSE, located his variometer just outside a window of the shack.  Adjustment is 
manual: open window, twist variometer knob, close window. 

6.5 Winding voltages, currents and power dissipation 

The current at the base of the antenna (Io) is also the current in the inductor.  The 
voltage across the inductor is the same as the voltage at the base of the antenna (Vo).   

Io is determined by the radiated power Pr and the radiation resistance Rr: 

𝐈𝐈𝐟𝐟 = �𝐏𝐏𝐑𝐑
𝐑𝐑𝐑𝐑

     (6.13) 

As explained in chapter 1, the maximum radiated power (Pr) is limited to  1.67W on 
630m and 0.33W on 2200m.  Combining the band specific values for Pr with Rr values 
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we can use equation (6.13) to create the graphs for Io shown in figures 6.41 and 6.42.  
Note that L is the overall length of the top-wire in feet in all of the graphs in this section. 

Vo is the voltage at the feedpoint: 

𝐕𝐕𝐟𝐟 = 𝐗𝐗𝐗𝐗𝐈𝐈𝐟𝐟     (6.14) 

We can use typical Xi values from chapter 3 to generate values for Vo as shown in 
figures 6.43 and 6.44.  Despite the low radiated powers (Pr) the voltages at the base 
will often be >1kV and can be much higher, particularly when H is small.  This must be 
kept in mind when selecting a base insulator.  A high Vo also means there will be 
significant voltage turn-to-turn in the loading inductor and across matching network 
components.  

PL is the power dissipated in the loading inductor, PL=Io2RL.  As shown in figures 6.45 
and 6.46 this power can easily be >100W (assuming that level of transmitter power is 
available).   The loading inductor must dissipate PL without damage!  In general the 
larger the physical size of the inductor the better heat can be dissipated.  QL=300 is 
assumed for both 137 kHz and 475 kHz.  This is a bit pessimistic given the earlier 
discussion since increasing QL reduces PL proportionately: 

𝐏𝐏𝐑𝐑𝟐𝟐
𝐏𝐏𝐑𝐑𝟏𝟏

= 𝐐𝐐𝐑𝐑𝟏𝟏
𝐐𝐐𝐑𝐑𝟐𝟐

     (6.15) 

In short verticals with limited top-loading Io, Vo and PL can be very high.  The key to 
reducing these values is to use sufficient top-loading.   
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Figure 6.41 - Io for Pr=1.67W at 475 kHz. 

 

Figure 6.42 - Io for Pr=0.33W at 137 kHz. 
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Figure 6.43 - Vo for Pr=1.67W at 475 kHz. 

 

Figure 6.44 - Vo for Pr=0.33W at 137 kHz. 
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Figure 6.45 - PL for Pr=1.67W at 475 kHz. 

 

Figure 6.46 - PL for Pr=0.33W at 137 kHz. 
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6.6 Enclosures 

Most amateurs will use some form of large plastic box for the tuning inductor 
enclosure.  These are inexpensive, readily available in a very wide range of sizes and 
have little or no effect on QL.  One shortcoming of typical plastic containers is their 
susceptibility to degradation from the UV in sunlight.  A coat of white house paint is 
usually enough to allow them to last several years.  Metal enclosures can also be used 
although large enclosures will usually be custom fabricated and are expensive.  In 
general a metal enclosure needs to be substantially larger than the inductor.  In 
particular the spacing from the ends of the coil to the enclosure wall should be at least 
equal to the coil diameter. A conducting enclosure will tend to reduce both L and QL if 
it isn't large enough. 

The primary purpose of the enclosure is to protect the coil from the weather, in 
particular keep it dry.  As the following experimental work shows, moisture can 
severely degrade inductor Q.  Some form of enclosure usually covers the coils but they 
can still be quite damp and perhaps even have some icing.  K6STI  sent me a link 
(http://www.n3ox.net/tech/coilQ/) to a note reporting some experiments on wet 
inductors.  The news was not good, moisture does not benefit Q!  After some 
discussion I ran a few simple experiments on two large coils using an HP4342A Q-
meter to judge the effects of water on Q. All the Q measurements were made at 475 
kHz.  In each test the Q-meter Cr was adjusted to re-resonate by adjusting for peak Q 
on the meter.  Most of the experiments were repeated to check consistency.  

 
6.6.1 Experiment 1 
 
I had on hand the bucket inductor shown in figure 6.47. L≈650uH.  I began with the coil 
dry: Q=460. Using a spray bottle, I sprayed water over the outside of the winding to 
simulate rain: Q=200! The coil was not happy being wet! 
 
 

http://www.n3ox.net/tech/coilQ/
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Figure 6.47 - Bucket inductor. 

 
 
6.6.2 Experiment 2 
 
The next test used the bare #12 wire coil on a PVC cage shown in figure 6.48. L≈1 mH 
@475 kHz. 
 

 
Figure 6.48 - PVC cage inductor. 
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Note: in the photo there is a plastic bag of ice lying in the bottom of the coil.  The ice 
was placed there later in the experiment.  The initial test was a dry coil, Q≈700 which 
was then sprayed: Q≈400.  Wiping the coil with a towel, the Q increased to 500 and 
slowly rose as the coil dried returning to ≈700 after some hours.  This coil was very 
sensitive to even a small film of moisture. 
 
The water used for the initial test was from my well which has a very small amount of 
salt in it.  As a check I bought a gallon of distilled water, rinsed the spray bottle 
carefully, and when the coil was again dry, re-sprayed it with distilled water: Q≈530.  
Then I switched back to well water and re-sprayed: again Q≈400.  One might argue 
that rain water is closer to distilled water than my well water but any inductor outside 
will have deposits from the air and rain water also brings down local pollution so I don't 
think the improvement using distilled water is cause for joy.  Up to this point the shift in 
Q-meter Cr was very small, a pF or so, essentially all the variation in Q was due to 
additional loss not a shift in SRF. 
 
6.6.3 Experiment 3 
 
Brian had suggested that ice might have higher losses than water so I ran a test.  As 
shown in figure 6.48 I placed a bag of ice inside the coil: Q≈250, not good!  To see if 
ice had more loss than water I allowed the ice to thaw completely and then put the now 
water-bag back in the coil: Q<200.  That looks like the ice is less lossy than water but I 
think that's deceiving.  The ice was pretty lumpy and the contact with the winding 
intermittent but when thawed the bag of water lay much closer to the winding.  In 
practice I think the ice and water have the same effect.  Outside in icing conditions the 
ice might very well build up a much thicker layer on the winding than a thin film of water 
so the effect might be much greater.  
  
6.6.4 Experiment 4 
 
I wanted to see if water on the outside of an enclosure would have any effect so I 
placed a plastic bag over the cage inductor as shown in figure 6.49. Note, the bag is 
quite close to the coil. I sprayed the outside of the bag with the coil connected to the Q-
meter: no observable effect.  Now if the bag had heavy icing then maybe it might make 
some difference but I was not able to run that experiment. 
 
6.6.5 Experiment 5 
 
During all the earlier experiments the shift in Cr was quite small, a pF or so, even when 
Q was severely reduced.  Just for the heck of it I placed the one gallon jug of distilled 
inside the coil: Q dropped from 700 to 360 and Cr was reduced by 5 pF.  This was the 
only time I saw a significant shift in Cr, which would be a dielectric effect. 
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Figure 6.49 - Coil with plastic cover. 

 
6.6.6 Conclusions 
 
This series of experiments was hardly rigorous, but I think they convincingly give the 
message: keep your coils dry and out of the weather and condensation.  To fight 
condensation the enclosure needs to be, drained and ventilated but be careful, don't 
make the vent holes large enough for the bees and wasps to get in.  A hornet nest in 
the coil does not improve Q!  The rule of thumb suggesting the walls of any enclosure, 
soil or other objects be at least one coil diameter away from the coil seems like 
reasonable advice.  
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Appendix A4 

Rg and Ground Systems  
A4.0 A closer look at ground systems 

Chapter 5 provided a number of practical examples of ground systems.  For the most 
part the performance of these systems was derived from NEC modeling with very little 
math.  For many readers that's more than sufficient but some will want more 
information.  This appendix gives some additional information that should provide 
some insight.  

A4.1 Feedpoint equivalent circuit 

 

Figure A4.1 - Equivalent circuit for the resistive part of the feedpoint impedance. 

Figure A4.1 shows an equivalent circuit used to represent the resistive part of an 
antenna's feedpoint impedance (Ri).  Io is the current at the feedpoint and the input 
power Pi=Io2Ri.  

• Rr is the radiation resistance representing the radiated power (Pr). 
• Rg accounts for the power dissipated in the soil (Pg).  
• RL represents the tuning inductor loss (PL).  
• Rc represents the loss in the conductors (Pc). 
• Rmisc represents other losses such as insulator leakage, etc. 
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This discussion is focused on Rg and it's relation to Rr.  The other losses are important 
but have been addressed elsewhere.    

Rr is very dependent on the specific details of the antenna: i.e. dimensions and 
loading.  Rr can also be a function of soil electrical characteristics and ground system 
design.  Although this effect is prominent at HF it's significantly less at LFMF.   

Rg depends on soil electrical characteristics which vary with frequency, details of the 
ground system and the antenna associated with the ground system.  If we modify the 
antenna, even without changing the ground system or soil, Rg will change.  We have to 
remember that neither Rr nor Rg is a physical resistor, they are "accounting tools" we 
use to keep track of where the input power (Pi) is going.  Because Pg depends on the 
electric and magnetic field intensities at the ground surface which change when the 
antenna is changed, Rg is dependent on the details of the antenna as well as the 
ground system itself. 

A4.2 Definitions for Pr, Pg, Rr and Rg 

 

Figure A4.2 - Pr and Pg. 

Figure A4.2 illustrates "Pr" and "Pg".  The dashed line represents a hypothetical 
hemispherical surface enclosing a vertical antenna.  The hemisphere radius r  is 
usually set r=λ/2 because that is approximately the outer boundary of the reactive 
near-field for verticals with a height of λ/8-λ/4.  Pr is defined as the total power radiated 
through the hemisphere.  Pg is defined as the power flowing into the ground surface 
and dissipated in the soil.  
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Rr and Rg are defined in terms of Pr and Pg: 

𝑹𝑹𝑹𝑹 ≡ 𝑷𝑷𝑹𝑹
𝑰𝑰𝒐𝒐

𝟐𝟐    Ω (A4.1)       𝑹𝑹𝑹𝑹 ≡ 𝑷𝑷𝑹𝑹

𝑰𝑰𝒐𝒐
𝟐𝟐    Ω (A4.2). 

A4.3 Efficiency 

We can state efficiency 𝛈𝛈 as:  

𝛈𝛈 = 𝟏𝟏

𝟏𝟏+
𝐑𝐑𝐠𝐠
𝐑𝐑𝐫𝐫

+𝐑𝐑𝐑𝐑
𝐑𝐑𝐫𝐫

+𝐑𝐑𝐜𝐜
𝐑𝐑𝐫𝐫

+𝐑𝐑𝐦𝐦𝐦𝐦𝐦𝐦𝐜𝐜
𝐑𝐑𝐫𝐫

    (A4.3) 

The purpose of the a ground system is to minimize the Rg/Rr term.  It should be kept in 
mind that it's not necessary for Rg/Rr to be zero.  When Rg/Rr becomes small 
compared to the sum of the other terms then that ground system is in a the region of 
diminishing returns.  Before designing the ground system we need to maximize Rr as 
described in chapters 3 and 4, minimize RL as described in chapter 6 and also 
minimize conductor loss (Rc).  When this has been done we can judge how extensive 
the ground system should be.  

A4.4 Soil characteristics 

For this discussion some soil electrical definitions will be helpful.   

σ = soil conductivity in Siemens/meter [S/m], Siemen=Mho 

εo = permittivity of a vacuum = 8.854 X 10-12 [Farads/m] 

εr = relative permittivity or relative dielectric constant 

ε=εoεr= effective permittivity or dielectric constant [Farads/m] 

μo = permeability of free space = 4π 10-7 H/m 

ω=2πf 

f= frequency 
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We can combine ω, σ, εo and εr into the loss tangent (D). 

D ≡ 𝐭𝐭𝐭𝐭𝐭𝐭 𝜹𝜹 ≡ σ
𝟐𝟐𝟐𝟐𝟐𝟐ε𝒐𝒐εr

= σ
ωε

   (A4.4) 

A4.5 Ground system geometries 

 

Figure A4.3 -Typical radial wire ground system. 

We have many choices for ground systems, from a simple ground stake to a complex 
web of wires which may be elevated above ground or lying on the ground surface or 
buried in the soil a short distance (usually 3"-12").  Figure A4.3 shows a typical radial 
wire ground system for a simple vertical.  In the case of an elevated system the radials 
may be long enough to be resonant.  While this is often practical on 160m, on the 
lower LF-MF bands it's usually not so non-resonant or "capacitive" systems are used.   
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Figure A4.4 - Alternative wire ground systems. 

Figure A4.4 shows some alternative wire ground systems.  Very often these are 
elevated and, when non-resonant, referred to as "counterpoises".  However, these 
systems can also be placed on the ground surface.  In particular the rectangular wire 
grid shown in (C) is often placed under vertical loop transmitting antennas.  It's widely 
assumed that a vertical loop transmitting antenna does not require a ground system 
and this is true, the ground system is not "required".  What is often not appreciated 
however, is the substantial ground loss associated with loops placed close to ground.  
Adding a ground system like that shown in (C) can substantially improve the efficiency.   

A4.6 Models for ground systems 

Several different models are used to explain ground systems.  They vary from simple 
to mathematically complex and their explanatory power varies from limited to very 
detailed.  

Figure A4.5 is the classic model seen in amateur literature.  The figure shows the 
radials elevated but the basic argument is the same when the radials are buried.  The 
idea is that the vertical is capacitively coupled to the both the radial system and the soil 
via the displacement currents (D) flowing in the capacitances.  Some D flows directly to 
the radials and then back along the radials to the vertical as conduction currents (I).  
However, some of D flows into the soil and then back into the radial system.  
Conduction currents flowing in the soil result in dissipation (i.e. Rg).  This simple model 
has considerable explanatory power!  We can see that more and/or longer radials 
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increase the coupling to the radials and partially shield the soil, reducing the soil 
current and Rg.  We can also see that the capacitance from the soil to the radials will 
be significantly reduced when the radials are elevated.  In practice even a small 
elevation results in significantly less ground current.   

 

Figure A4.5 - Simple capacitive equivalent circuit model. 

However, this model is not very useful if we want to determine the specific details 
regarding the currents and associated ground loss.  For that kind of information we can 
change to the model shown in figure A4.6.  This model recognizes that the current in 
the vertical creates an electromagnetic field around the antenna.  As indicated there 
will be both electric (E-field) and magnetic (H-field) components.  The fields interact 
with the radial system and ground introducing loss.  While this model can determine Rr 
and Rc accurately it's very complex mathematically.   
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Figure A4.6 -Field model for a vertical and ground system. 

Fortunately there is an intermediate model derived from optics.  When an antenna is 
placed over soil some of the input power (Pi) is radiated and some is absorbed in the 
soil.  One of the earliest quantitative analysis regarding ground loss and propagation of 
radio waves over lossy soil was done by Arnold Sommerfeld.  About 1896[37] he solved 
the general problem of the diffraction of electromagnetic waves (EM) in lossy media, 
i.e. reflection and refraction at an interface between two media, air and soil.  Some 
years later Sommerfeld used this insight to solve the general problem of waves 
interacting with and propagating over real lossy ground[44, 45].  The "Sommerfeld 
Ground Model", is still widely used.  His analysis was based on the diffraction theory 
which represents the physical processes. 

We can understand his view with an analogy to a lamp placed over the surface of a 
pond as shown in figure A4.7(A).  We know that if a light source (the lamp) is placed 
over the surface of a pond some of the light will be reflected from the surface but the 
rest will be refracted into the water and absorbed.  Light is electromagnetic radiation. 
Radio waves are also electromagnetic radiation only much lower in frequency.  As 
shown in figure A4.7(B), instead of a lamp over a pond, we could substitute a short 
vertical conductor carrying an RF current.  This short conductor is an antenna.  A 
portion of the radiation is reflected from the soil and the rest is refracted into the soil 
and dissipated.  The lost radiation is the ground loss, Pg.  In most recent editions of  
Antenna Book and other texts the reflection part of figure A4.7 is discussed at length in 
the context of the formation of the far-field pattern.   
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Figure A4.7 - A lamp over a pond (A) and a short vertical antenna over soil (B). 

 

Figure A4.8 - A short vertical over ground. 

By way of an example we can shift the  view point as shown in figure A4.8.  Sz 
represents the intensity of the power flow in W/m2 into the ground surface at a given 
point on the surface.  For this part of the discussion we will let Pg=Pz, the total power 
flowing into the soil at the surface within a radius r.  Az=2πrdr is the area of ring at 
radius r with width dr.  rmax is the maximum radius which for this example will be 1000' 
(≈λ/2 at 475 kHz).  H= 40' with the bottom end 10' above ground.  The frequency is 475 
kHz. 
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With Pi=1W we can ask "what is the total power dissipated in the soil near the antenna, 
for radii (r) out to 1000'.  Using techniques shown in Appendix A.tbd we can calculate 
and graph the intensity of the power flow (Sz) across the air-soil interface into the soil 
as shown in figure A4.9 for three different soils.  We can take a further step and sum 
the power flow through the ring Az as shown in figure A4.10.  Finally we can sum Sz 
within a radius rmax to get the total power flowing into the soil as shown in figure 
A4.11. 

 

Figure A4.9 - Power density (Sz [W/m2]) near soil surface versus radius r. 
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Figure A4.10 - Power dissipation in a ring (dr=5') at a distance r. 

 

Figure A4.11 - Power flow (sum of Sz) into the soil within a given radius, 6" above the 
soil surface. 
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These graphs show several interesting things.  First, most of the power is lost close to 
the base, within 50'≈0.025λ in this example.  Concentration of power loss close to the 
base is typical of verticals and tells us that when installing a ground system we need to 
pay particular attention to the ground system near the base.  

  Second, the loss is strong function of the soil characteristics.  The dominant influence 
at MF is the conductivity but a HF εr  becomes important.   For this example, the effect 
of different soils, including perfect ground, on Rr and Rg is summarized in table A4.1. 

Table A4.1 - summary 

soil= ideal 0.001/5 0.005/13 0.03/20 
Ri= 0.14Ω 2.736 Ω 0.7483Ω 0.3258Ω 
Rr= 0.14Ω 0.134Ω 0.1412Ω 0.1403Ω 
Rg= 0Ω 2.601Ω 0.6433Ω 0.1855 
Xc= 10160Ω 10160Ω 10160Ω  10160Ω 
Io= 2.673Arms 0.6046Arms 1.129Arms 1.752Arms 
Pi= 1W 1W 1W 1W 
Pr= 1W 0.049W 0.18W 0.43W 
Pg= 0W 0.95W 0.82W 0.57W 

 

Third, in this example Pi=1W so we see that that for the poor soil almost 95% of the 
radiated power is absorbed in the soil!  This indicates the need for a ground system.   

In the case of the lamp over the surface of a pond if we wanted to reduce the light lost 
into the water we could simply install a mirror on the surface under the lamp.  The 
greater the mirror diameter the less light lost.  We can do exactly the same thing with 
the antenna in figure A4.9 by placing a buried radial system under the antenna as 
shown in figure A4.12.  In this example there are 60 radials buried 1' in average soil 
(0.005/13).  The radials are connected at the center but are not connected to the 
vertical conductor.  The radial lengths are varied from 50' to 150' for the Pz calculations 
shown in figure 4.13. 

The radial system is not a perfect "mirror".  It's effectiveness  will depend on the 
number of radials and their length.  More numerous and/or longer radials make for a 
better "mirror" and lower soil loss. 
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Figure A4.12 - Antenna with a buried radial ground system. 

   

 

Figure A4.13 - Pz sum: 60 radials, 50', 100' and 150', z=-24". 

From figure A4.13 we can see how effective a radial ground system can be in reducing 
Pg in the soil under a vertical.  As the radials are made longer the power absorbed 
under the ground system is drastically reduced, extending the radial lengths extends 
the radius of the "mirror".  The number of radials is also important  because the 
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reflectivity of the ground system improves as the wires are brought closer together 
which is what happens when more numerous radials are used  as illustrated in figure 
4.14. 

 

Figure 4.14 - The effect of radial number on Pz. 

A4.7 Pg in a grounded vertical 

The antenna example in figure A4.9 was useful for explaining Pg but the antenna itself 
is not very practical, at least at LF-MF.  Let's now look at a much more typical 630m 
amateur antenna, the  top-loaded vertical shown in figure 4.15 with two different 
ground system options: a single long ground stake and an extensive buried radial wire 
system.  H=50' and the 8-spoke hat has a radius of 15' and a skirt wire.  The ground 
stake is 1" in diameter and extends into the soil 50'.  The radial system has thirty 50' 
radials buried 1'.    This exercise illustrates the shortcomings of a simple ground stake 
system.   
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Figure 4.15 - 630m top-loaded vertical with two ground systems. 

As indicated in figure 4.16, Pz represents the power radiated downward into the soil 
and Px represents the power radiated from the ground rod. 

 

Figure 4.16 - Ground loss model using refraction. 

When we do the calculation assuming RL=0 and Pi=1W, we get the following result: 
Pr=0.03W, Pz=0.27W and Px=0.70W.  The efficiency is about 3% with 27% the power 
being refracted into the soil from the upper part of the antenna and 70% is radiated 
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from the lower half of the antenna directly into the soil!  this picture also emphasizes 
that the ground rod is not just a auxiliary element, it is a radiating part of the antenna!   

If we replace the ground rod with the radial system we find for Pi=1W, Pr=0.24W and 
Pg=0.76W.  The radial ground system increases the radiation efficiency from 3% to 
24%!  A larger ground system would further improve the efficiency. 

At this point we've seen a general argument why we might want to use a ground 
system with a vertical.  The practical details are more complicated and there are 
different kinds of ground systems, not just buried radial systems.  More details are 
given in chapters 5 & 6. 

4.8 Radial systems as reflectors 

The concept that a wire ground system could be viewed as a mirror or reflector for EM 
waves has been carefully investigated from the very earliest days of Radio by many 
researchers[37-43].  There are several variables: polarization of the EM wave, 
arrangement of the wires, the distance between the wires and the ground and the 
characteristics of the soil.  Solving this problem for the general case requires some 
pretty advanced mathematics but fortunately the nature of the fields around a verticals 
usually allows us to use a simpler approximation.   

We can understand the interaction of the field on this combination of soil and grating by 
using a transmission line analogy shown in figure A4.17.  

A wave traveling in free space is equivalent to a wave traveling along a ideal 
transmission line with a characteristic impedance Zo.  The space above ground is 
represented by a parallel wire transmission line with an impedance equal to free space, 
i.e.: 

𝒁𝒁𝒐𝒐 = �
𝝁𝝁𝒐𝒐
𝜺𝜺𝒐𝒐

= 𝑬𝑬
𝑯𝑯

= 𝟑𝟑𝟑𝟑𝟑𝟑. 𝟑𝟑𝟕𝟕     (A4.5) 
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Figure 4.17 - Transmission line analogy. 

The grating can be viewed as an array of parallel two-wire transmission lines with a 
characteristic impedance Zr: 

𝒁𝒁𝑹𝑹 = 𝒋𝒋𝒋𝒋𝑹𝑹 = 𝒋𝒋 �𝟐𝟐𝝁𝝁𝒐𝒐𝒅𝒅′ 𝐥𝐥𝐭𝐭 � 𝒅𝒅′
𝟐𝟐𝒅𝒅

�� (A4.6) 

Where: d'= wire spacing and d=wire diameter in meters.  Note that Zr is an inductance 
with no dissipation.  This is not strictly correct, ground system wires will have some 
loss but it's usually small.  We also have to realize the equation (A4.6) is valid only for 
d'<<λ[tbd-Abbott].  Typically you have to keep d'<2.5 m at 475 kHz. 

When the ground system is arranged in a radial fan like that shown in figure A4.8 the 
spacing (d') between the radial wires will vary with the distance from the base (L') and 
the number of radials (N): 

𝒅𝒅′ = 𝟐𝟐𝑳𝑳′𝒕𝒕𝒕𝒕𝒕𝒕 �𝟐𝟐
𝑵𝑵

�   (A4.7) 

The soil can also be represented by a transmission line but we have to take into 
account the conductivity (σ) and relative permeability (εr) to determine the 
characteristic impedance Zs: 
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𝒁𝒁𝒁𝒁 = 𝒁𝒁𝒐𝒐

√𝜺𝜺𝑹𝑹
� 𝟏𝟏

�𝟏𝟏−𝒋𝒋𝒋𝒋 
�     (A4.8) 

 

Figure A4.15 - Zr-Zs equivalent circuit. 

As indicated in figure A4.14 We can join the three transmission lines (air, wire grid and 
soil) which gives us the equivalent circuit shown in figure A4.15.  Keep in mind this is 
an analogy, I represents the incoming wave, Ir represents the portion of the wave 
diverted into the ground system and Is represents the portion of the wave absorbed in 
the soil.   

If Zr is small compared to Zs then very little energy will be delivered to Zs and lost.  
What we want is Zr <<Zs so the majority of the current flows in the ground system and 
not the soil.  The wave energy goes into inductive storage in Zr and is reradiated, i.e. 
reflected.  We can use this model along with some spreadsheet calculations to obtain 
guidance on wire spacing, wire size and radial numbers in ground systems.  Most soils 
are capacitive so Xs is usually negative. 

For calculations it helps to restate Zs as: 

𝒁𝒁𝒁𝒁 = 𝑹𝑹𝒁𝒁 + 𝒋𝒋𝒋𝒋𝒁𝒁     (A4.9) 

Where: 

𝑹𝑹𝒁𝒁 = |𝒁𝒁𝒁𝒁|𝒄𝒄𝒐𝒐𝒁𝒁𝒄𝒄,     𝒋𝒋𝒁𝒁 = −|𝒁𝒁𝒁𝒁|𝒁𝒁𝒔𝒔𝒕𝒕𝒄𝒄,  𝒄𝒄 = 𝒕𝒕𝒕𝒕𝒕𝒕−𝟏𝟏(𝒋𝒋)
𝟐𝟐

      

𝒋𝒋 ≡ σ
ωε

,       |𝒁𝒁𝒁𝒁| = 𝒁𝒁𝒐𝒐

√𝜺𝜺𝑹𝑹
� 𝟏𝟏

(𝟏𝟏+𝒋𝒋𝟐𝟐)𝟏𝟏/𝟒𝟒�     

The power loss in the soil is proportional to: 
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𝑷𝑷𝑹𝑹 ∝ �𝑰𝑰𝒁𝒁
𝑰𝑰

�
𝟐𝟐

     (A4.10) 

The smaller this ratio the better!   

From figure A4.15: 

�𝑰𝑰𝒁𝒁
𝑰𝑰

� = |𝒁𝒁𝑹𝑹|
|𝒁𝒁𝑹𝑹+𝒁𝒁𝒁𝒁| = 𝒋𝒋𝑹𝑹

�𝑹𝑹𝒁𝒁𝟐𝟐+(𝒋𝒋𝑹𝑹+𝒋𝒋𝒁𝒁)𝟐𝟐     (A4.11) 

 

Figure A4.16 - Soil  and transmission line impedances. 

The solid line in figure A4.16 represents the value of Zs for a typical soil as a function 
of frequency (100 kHz- 100 MHz).  The data from which Zs was calculated was taken 
from King and Smith[tbd].  This particular data set is for moderate conductivity soil 
(σ≈0.01 S/m and Er≈60 @ 475 kHz).   The dashed lines in figure A4.16 represent Zr 
for different spacing's (d' =6"-36").  
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